Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2024 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
| # LICENSE is in incl_licenses directory. | |
| import math | |
| import os | |
| import random | |
| import torch | |
| import torch.utils.data | |
| import numpy as np | |
| import librosa | |
| from librosa.filters import mel as librosa_mel_fn | |
| import pathlib | |
| from tqdm import tqdm | |
| from typing import List, Tuple, Optional | |
| import os | |
| import shutil | |
| class AttrDict(dict): | |
| def __init__(self, *args, **kwargs): | |
| super(AttrDict, self).__init__(*args, **kwargs) | |
| self.__dict__ = self | |
| def build_env(config, config_name, path): | |
| t_path = os.path.join(path, config_name) | |
| if config != t_path: | |
| os.makedirs(path, exist_ok=True) | |
| shutil.copyfile(config, os.path.join(path, config_name)) | |
| MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases) | |
| def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
| return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) | |
| def dynamic_range_decompression(x, C=1): | |
| return np.exp(x) / C | |
| def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
| return torch.log(torch.clamp(x, min=clip_val) * C) | |
| def dynamic_range_decompression_torch(x, C=1): | |
| return torch.exp(x) / C | |
| def spectral_normalize_torch(magnitudes): | |
| return dynamic_range_compression_torch(magnitudes) | |
| def spectral_de_normalize_torch(magnitudes): | |
| return dynamic_range_decompression_torch(magnitudes) | |
| mel_basis_cache = {} | |
| hann_window_cache = {} | |
| def mel_spectrogram( | |
| y: torch.Tensor, | |
| n_fft: int, | |
| num_mels: int, | |
| sampling_rate: int, | |
| hop_size: int, | |
| win_size: int, | |
| fmin: int, | |
| fmax: int = None, | |
| center: bool = False, | |
| ) -> torch.Tensor: | |
| """ | |
| Calculate the mel spectrogram of an input signal. | |
| This function uses slaney norm for the librosa mel filterbank (using librosa.filters.mel) and uses Hann window for STFT (using torch.stft). | |
| Args: | |
| y (torch.Tensor): Input signal. | |
| n_fft (int): FFT size. | |
| num_mels (int): Number of mel bins. | |
| sampling_rate (int): Sampling rate of the input signal. | |
| hop_size (int): Hop size for STFT. | |
| win_size (int): Window size for STFT. | |
| fmin (int): Minimum frequency for mel filterbank. | |
| fmax (int): Maximum frequency for mel filterbank. If None, defaults to half the sampling rate (fmax = sr / 2.0) inside librosa_mel_fn | |
| center (bool): Whether to pad the input to center the frames. Default is False. | |
| Returns: | |
| torch.Tensor: Mel spectrogram. | |
| """ | |
| if torch.min(y) < -1.0: | |
| print(f"[WARNING] Min value of input waveform signal is {torch.min(y)}") | |
| if torch.max(y) > 1.0: | |
| print(f"[WARNING] Max value of input waveform signal is {torch.max(y)}") | |
| device = y.device | |
| key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}" | |
| if key not in mel_basis_cache: | |
| mel = librosa_mel_fn( | |
| sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax | |
| ) | |
| mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) | |
| hann_window_cache[key] = torch.hann_window(win_size).to(device) | |
| mel_basis = mel_basis_cache[key] | |
| hann_window = hann_window_cache[key] | |
| padding = (n_fft - hop_size) // 2 | |
| y = torch.nn.functional.pad( | |
| y.unsqueeze(1), (padding, padding), mode="reflect" | |
| ).squeeze(1) | |
| spec = torch.stft( | |
| y, | |
| n_fft, | |
| hop_length=hop_size, | |
| win_length=win_size, | |
| window=hann_window, | |
| center=center, | |
| pad_mode="reflect", | |
| normalized=False, | |
| onesided=True, | |
| return_complex=True, | |
| ) | |
| spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9) | |
| mel_spec = torch.matmul(mel_basis, spec) | |
| mel_spec = spectral_normalize_torch(mel_spec) | |
| return mel_spec | |
| def get_mel_spectrogram(wav, h): | |
| """ | |
| Generate mel spectrogram from a waveform using given hyperparameters. | |
| Args: | |
| wav (torch.Tensor): Input waveform. | |
| h: Hyperparameters object with attributes n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax. | |
| Returns: | |
| torch.Tensor: Mel spectrogram. | |
| """ | |
| return mel_spectrogram( | |
| wav, | |
| h.n_fft, | |
| h.num_mels, | |
| h.sampling_rate, | |
| h.hop_size, | |
| h.win_size, | |
| h.fmin, | |
| h.fmax, | |
| ) | |
| def get_dataset_filelist(a): | |
| training_files = [] | |
| validation_files = [] | |
| list_unseen_validation_files = [] | |
| with open(a.input_training_file, "r", encoding="utf-8") as fi: | |
| training_files = [ | |
| os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") | |
| for x in fi.read().split("\n") | |
| if len(x) > 0 | |
| ] | |
| print(f"first training file: {training_files[0]}") | |
| with open(a.input_validation_file, "r", encoding="utf-8") as fi: | |
| validation_files = [ | |
| os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") | |
| for x in fi.read().split("\n") | |
| if len(x) > 0 | |
| ] | |
| print(f"first validation file: {validation_files[0]}") | |
| for i in range(len(a.list_input_unseen_validation_file)): | |
| with open(a.list_input_unseen_validation_file[i], "r", encoding="utf-8") as fi: | |
| unseen_validation_files = [ | |
| os.path.join(a.list_input_unseen_wavs_dir[i], x.split("|")[0] + ".wav") | |
| for x in fi.read().split("\n") | |
| if len(x) > 0 | |
| ] | |
| print( | |
| f"first unseen {i}th validation fileset: {unseen_validation_files[0]}" | |
| ) | |
| list_unseen_validation_files.append(unseen_validation_files) | |
| return training_files, validation_files, list_unseen_validation_files | |
| class MelDataset(torch.utils.data.Dataset): | |
| def __init__( | |
| self, | |
| training_files: List[str], | |
| hparams: AttrDict, | |
| segment_size: int, | |
| n_fft: int, | |
| num_mels: int, | |
| hop_size: int, | |
| win_size: int, | |
| sampling_rate: int, | |
| fmin: int, | |
| fmax: Optional[int], | |
| split: bool = True, | |
| shuffle: bool = True, | |
| device: str = None, | |
| fmax_loss: Optional[int] = None, | |
| fine_tuning: bool = False, | |
| base_mels_path: str = None, | |
| is_seen: bool = True, | |
| ): | |
| self.audio_files = training_files | |
| random.seed(1234) | |
| if shuffle: | |
| random.shuffle(self.audio_files) | |
| self.hparams = hparams | |
| self.is_seen = is_seen | |
| if self.is_seen: | |
| self.name = pathlib.Path(self.audio_files[0]).parts[0] | |
| else: | |
| self.name = "-".join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/") | |
| self.segment_size = segment_size | |
| self.sampling_rate = sampling_rate | |
| self.split = split | |
| self.n_fft = n_fft | |
| self.num_mels = num_mels | |
| self.hop_size = hop_size | |
| self.win_size = win_size | |
| self.fmin = fmin | |
| self.fmax = fmax | |
| self.fmax_loss = fmax_loss | |
| self.device = device | |
| self.fine_tuning = fine_tuning | |
| self.base_mels_path = base_mels_path | |
| print("[INFO] checking dataset integrity...") | |
| for i in tqdm(range(len(self.audio_files))): | |
| assert os.path.exists( | |
| self.audio_files[i] | |
| ), f"{self.audio_files[i]} not found" | |
| def __getitem__( | |
| self, index: int | |
| ) -> Tuple[torch.Tensor, torch.Tensor, str, torch.Tensor]: | |
| try: | |
| filename = self.audio_files[index] | |
| # Use librosa.load that ensures loading waveform into mono with [-1, 1] float values | |
| # Audio is ndarray with shape [T_time]. Disable auto-resampling here to minimize overhead | |
| # The on-the-fly resampling during training will be done only for the obtained random chunk | |
| audio, source_sampling_rate = librosa.load(filename, sr=None, mono=True) | |
| # Main logic that uses <mel, audio> pair for training BigVGAN | |
| if not self.fine_tuning: | |
| if self.split: # Training step | |
| # Obtain randomized audio chunk | |
| if source_sampling_rate != self.sampling_rate: | |
| # Adjust segment size to crop if the source sr is different | |
| target_segment_size = math.ceil( | |
| self.segment_size | |
| * (source_sampling_rate / self.sampling_rate) | |
| ) | |
| else: | |
| target_segment_size = self.segment_size | |
| # Compute upper bound index for the random chunk | |
| random_chunk_upper_bound = max( | |
| 0, audio.shape[0] - target_segment_size | |
| ) | |
| # Crop or pad audio to obtain random chunk with target_segment_size | |
| if audio.shape[0] >= target_segment_size: | |
| audio_start = random.randint(0, random_chunk_upper_bound) | |
| audio = audio[audio_start : audio_start + target_segment_size] | |
| else: | |
| audio = np.pad( | |
| audio, | |
| (0, target_segment_size - audio.shape[0]), | |
| mode="constant", | |
| ) | |
| # Resample audio chunk to self.sampling rate | |
| if source_sampling_rate != self.sampling_rate: | |
| audio = librosa.resample( | |
| audio, | |
| orig_sr=source_sampling_rate, | |
| target_sr=self.sampling_rate, | |
| ) | |
| if audio.shape[0] > self.segment_size: | |
| # trim last elements to match self.segment_size (e.g., 16385 for 44khz downsampled to 24khz -> 16384) | |
| audio = audio[: self.segment_size] | |
| else: # Validation step | |
| # Resample full audio clip to target sampling rate | |
| if source_sampling_rate != self.sampling_rate: | |
| audio = librosa.resample( | |
| audio, | |
| orig_sr=source_sampling_rate, | |
| target_sr=self.sampling_rate, | |
| ) | |
| # Trim last elements to match audio length to self.hop_size * n for evaluation | |
| if (audio.shape[0] % self.hop_size) != 0: | |
| audio = audio[: -(audio.shape[0] % self.hop_size)] | |
| # BigVGAN is trained using volume-normalized waveform | |
| audio = librosa.util.normalize(audio) * 0.95 | |
| # Cast ndarray to torch tensor | |
| audio = torch.FloatTensor(audio) | |
| audio = audio.unsqueeze(0) # [B(1), self.segment_size] | |
| # Compute mel spectrogram corresponding to audio | |
| mel = mel_spectrogram( | |
| audio, | |
| self.n_fft, | |
| self.num_mels, | |
| self.sampling_rate, | |
| self.hop_size, | |
| self.win_size, | |
| self.fmin, | |
| self.fmax, | |
| center=False, | |
| ) # [B(1), self.num_mels, self.segment_size // self.hop_size] | |
| # Fine-tuning logic that uses pre-computed mel. Example: Using TTS model-generated mel as input | |
| else: | |
| # For fine-tuning, assert that the waveform is in the defined sampling_rate | |
| # Fine-tuning won't support on-the-fly resampling to be fool-proof (the dataset should have been prepared properly) | |
| assert ( | |
| source_sampling_rate == self.sampling_rate | |
| ), f"For fine_tuning, waveform must be in the spcified sampling rate {self.sampling_rate}, got {source_sampling_rate}" | |
| # Cast ndarray to torch tensor | |
| audio = torch.FloatTensor(audio) | |
| audio = audio.unsqueeze(0) # [B(1), T_time] | |
| # Load pre-computed mel from disk | |
| mel = np.load( | |
| os.path.join( | |
| self.base_mels_path, | |
| os.path.splitext(os.path.split(filename)[-1])[0] + ".npy", | |
| ) | |
| ) | |
| mel = torch.from_numpy(mel) | |
| if len(mel.shape) < 3: | |
| mel = mel.unsqueeze(0) # ensure [B, C, T] | |
| if self.split: | |
| frames_per_seg = math.ceil(self.segment_size / self.hop_size) | |
| if audio.size(1) >= self.segment_size: | |
| mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1) | |
| mel = mel[:, :, mel_start : mel_start + frames_per_seg] | |
| audio = audio[ | |
| :, | |
| mel_start | |
| * self.hop_size : (mel_start + frames_per_seg) | |
| * self.hop_size, | |
| ] | |
| # Pad pre-computed mel and audio to match length to ensuring fine-tuning without error. | |
| # NOTE: this may introduce a single-frame misalignment of the <pre-computed mel, audio> | |
| # To remove possible misalignment, it is recommended to prepare the <pre-computed mel, audio> pair where the audio length is the integer multiple of self.hop_size | |
| mel = torch.nn.functional.pad( | |
| mel, (0, frames_per_seg - mel.size(2)), "constant" | |
| ) | |
| audio = torch.nn.functional.pad( | |
| audio, (0, self.segment_size - audio.size(1)), "constant" | |
| ) | |
| # Compute mel_loss used by spectral regression objective. Uses self.fmax_loss instead (usually None) | |
| mel_loss = mel_spectrogram( | |
| audio, | |
| self.n_fft, | |
| self.num_mels, | |
| self.sampling_rate, | |
| self.hop_size, | |
| self.win_size, | |
| self.fmin, | |
| self.fmax_loss, | |
| center=False, | |
| ) # [B(1), self.num_mels, self.segment_size // self.hop_size] | |
| # Shape sanity checks | |
| assert ( | |
| audio.shape[1] == mel.shape[2] * self.hop_size | |
| and audio.shape[1] == mel_loss.shape[2] * self.hop_size | |
| ), f"Audio length must be mel frame length * hop_size. Got audio shape {audio.shape} mel shape {mel.shape} mel_loss shape {mel_loss.shape}" | |
| return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) | |
| # If it encounters error during loading the data, skip this sample and load random other sample to the batch | |
| except Exception as e: | |
| if self.fine_tuning: | |
| raise e # Terminate training if it is fine-tuning. The dataset should have been prepared properly. | |
| else: | |
| print( | |
| f"[WARNING] Failed to load waveform, skipping! filename: {filename} Error: {e}" | |
| ) | |
| return self[random.randrange(len(self))] | |
| def __len__(self): | |
| return len(self.audio_files) |