Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from .dac import DAC | |
| from .stable_vae import load_vae | |
| class Autoencoder(nn.Module): | |
| def __init__(self, ckpt_path, model_type='dac', quantization_first=False): | |
| super(Autoencoder, self).__init__() | |
| self.model_type = model_type | |
| if self.model_type == 'dac': | |
| model = DAC.load(ckpt_path) | |
| elif self.model_type == 'stable_vae': | |
| model = load_vae(ckpt_path) | |
| else: | |
| raise NotImplementedError(f"Model type not implemented: {self.model_type}") | |
| self.ae = model.eval() | |
| self.quantization_first = quantization_first | |
| print(f'Autoencoder quantization first mode: {quantization_first}') | |
| def forward(self, audio=None, embedding=None): | |
| if self.model_type == 'dac': | |
| return self.process_dac(audio, embedding) | |
| elif self.model_type == 'encodec': | |
| return self.process_encodec(audio, embedding) | |
| elif self.model_type == 'stable_vae': | |
| return self.process_stable_vae(audio, embedding) | |
| else: | |
| raise NotImplementedError(f"Model type not implemented: {self.model_type}") | |
| def process_dac(self, audio=None, embedding=None): | |
| if audio is not None: | |
| z = self.ae.encoder(audio) | |
| if self.quantization_first: | |
| z, *_ = self.ae.quantizer(z, None) | |
| return z | |
| elif embedding is not None: | |
| z = embedding | |
| if self.quantization_first: | |
| audio = self.ae.decoder(z) | |
| else: | |
| z, *_ = self.ae.quantizer(z, None) | |
| audio = self.ae.decoder(z) | |
| return audio | |
| else: | |
| raise ValueError("Either audio or embedding must be provided.") | |
| def process_encodec(self, audio=None, embedding=None): | |
| if audio is not None: | |
| z = self.ae.encoder(audio) | |
| if self.quantization_first: | |
| code = self.ae.quantizer.encode(z) | |
| z = self.ae.quantizer.decode(code) | |
| return z | |
| elif embedding is not None: | |
| z = embedding | |
| if self.quantization_first: | |
| audio = self.ae.decoder(z) | |
| else: | |
| code = self.ae.quantizer.encode(z) | |
| z = self.ae.quantizer.decode(code) | |
| audio = self.ae.decoder(z) | |
| return audio | |
| else: | |
| raise ValueError("Either audio or embedding must be provided.") | |
| def process_stable_vae(self, audio=None, embedding=None): | |
| if audio is not None: | |
| z = self.ae.encoder(audio) | |
| if self.quantization_first: | |
| z = self.ae.bottleneck.encode(z) | |
| return z | |
| if embedding is not None: | |
| z = embedding | |
| if self.quantization_first: | |
| audio = self.ae.decoder(z) | |
| else: | |
| z = self.ae.bottleneck.encode(z) | |
| audio = self.ae.decoder(z) | |
| return audio | |
| else: | |
| raise ValueError("Either audio or embedding must be provided.") | |