Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from torch.utils.checkpoint import checkpoint | |
| from .utils.attention import Attention, JointAttention | |
| from .utils.modules import unpatchify, FeedForward | |
| from .utils.modules import film_modulate | |
| class AdaLN(nn.Module): | |
| def __init__(self, dim, ada_mode='ada', r=None, alpha=None): | |
| super().__init__() | |
| self.ada_mode = ada_mode | |
| self.scale_shift_table = None | |
| if ada_mode == 'ada': | |
| # move nn.silu outside | |
| self.time_ada = nn.Linear(dim, 6 * dim, bias=True) | |
| elif ada_mode == 'ada_single': | |
| # adaln used in pixel-art alpha | |
| self.scale_shift_table = nn.Parameter(torch.zeros(6, dim)) | |
| elif ada_mode in ['ada_lora', 'ada_lora_bias']: | |
| self.lora_a = nn.Linear(dim, r * 6, bias=False) | |
| self.lora_b = nn.Linear(r * 6, dim * 6, bias=False) | |
| self.scaling = alpha / r | |
| if ada_mode == 'ada_lora_bias': | |
| # take bias out for consistency | |
| self.scale_shift_table = nn.Parameter(torch.zeros(6, dim)) | |
| else: | |
| raise NotImplementedError | |
| def forward(self, time_token=None, time_ada=None): | |
| if self.ada_mode == 'ada': | |
| assert time_ada is None | |
| B = time_token.shape[0] | |
| time_ada = self.time_ada(time_token).reshape(B, 6, -1) | |
| elif self.ada_mode == 'ada_single': | |
| B = time_ada.shape[0] | |
| time_ada = time_ada.reshape(B, 6, -1) | |
| time_ada = self.scale_shift_table[None] + time_ada | |
| elif self.ada_mode in ['ada_lora', 'ada_lora_bias']: | |
| B = time_ada.shape[0] | |
| time_ada_lora = self.lora_b(self.lora_a(time_token)) * self.scaling | |
| time_ada = time_ada + time_ada_lora | |
| time_ada = time_ada.reshape(B, 6, -1) | |
| if self.scale_shift_table is not None: | |
| time_ada = self.scale_shift_table[None] + time_ada | |
| else: | |
| raise NotImplementedError | |
| return time_ada | |
| class DiTBlock(nn.Module): | |
| """ | |
| A modified PixArt block with adaptive layer norm (adaLN-single) conditioning. | |
| """ | |
| def __init__(self, dim, context_dim=None, | |
| num_heads=8, mlp_ratio=4., | |
| qkv_bias=False, qk_scale=None, qk_norm=None, | |
| act_layer='gelu', norm_layer=nn.LayerNorm, | |
| time_fusion='none', | |
| ada_lora_rank=None, ada_lora_alpha=None, | |
| skip=False, skip_norm=False, | |
| rope_mode='none', | |
| context_norm=False, | |
| use_checkpoint=False): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention(dim=dim, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| qk_norm=qk_norm, | |
| rope_mode=rope_mode) | |
| if context_dim is not None: | |
| self.use_context = True | |
| self.cross_attn = Attention(dim=dim, | |
| num_heads=num_heads, | |
| context_dim=context_dim, | |
| qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| qk_norm=qk_norm, | |
| rope_mode='none') | |
| self.norm2 = norm_layer(dim) | |
| if context_norm: | |
| self.norm_context = norm_layer(context_dim) | |
| else: | |
| self.norm_context = nn.Identity() | |
| else: | |
| self.use_context = False | |
| self.norm3 = norm_layer(dim) | |
| self.mlp = FeedForward(dim=dim, mult=mlp_ratio, | |
| activation_fn=act_layer, dropout=0) | |
| self.use_adanorm = True if time_fusion != 'token' else False | |
| if self.use_adanorm: | |
| self.adaln = AdaLN(dim, ada_mode=time_fusion, | |
| r=ada_lora_rank, alpha=ada_lora_alpha) | |
| if skip: | |
| self.skip_norm = norm_layer(2 * dim) if skip_norm else nn.Identity() | |
| self.skip_linear = nn.Linear(2 * dim, dim) | |
| else: | |
| self.skip_linear = None | |
| self.use_checkpoint = use_checkpoint | |
| def forward(self, x, time_token=None, time_ada=None, | |
| skip=None, context=None, | |
| x_mask=None, context_mask=None, extras=None): | |
| if self.use_checkpoint: | |
| return checkpoint(self._forward, x, | |
| time_token, time_ada, skip, context, | |
| x_mask, context_mask, extras, | |
| use_reentrant=False) | |
| else: | |
| return self._forward(x, | |
| time_token, time_ada, skip, context, | |
| x_mask, context_mask, extras) | |
| def _forward(self, x, time_token=None, time_ada=None, | |
| skip=None, context=None, | |
| x_mask=None, context_mask=None, extras=None): | |
| B, T, C = x.shape | |
| if self.skip_linear is not None: | |
| assert skip is not None | |
| cat = torch.cat([x, skip], dim=-1) | |
| cat = self.skip_norm(cat) | |
| x = self.skip_linear(cat) | |
| if self.use_adanorm: | |
| time_ada = self.adaln(time_token, time_ada) | |
| (shift_msa, scale_msa, gate_msa, | |
| shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1) | |
| # self attention | |
| if self.use_adanorm: | |
| x_norm = film_modulate(self.norm1(x), shift=shift_msa, | |
| scale=scale_msa) | |
| x = x + (1 - gate_msa) * self.attn(x_norm, context=None, | |
| context_mask=x_mask, | |
| extras=extras) | |
| else: | |
| x = x + self.attn(self.norm1(x), context=None, context_mask=x_mask, | |
| extras=extras) | |
| # cross attention | |
| if self.use_context: | |
| assert context is not None | |
| x = x + self.cross_attn(x=self.norm2(x), | |
| context=self.norm_context(context), | |
| context_mask=context_mask, extras=extras) | |
| # mlp | |
| if self.use_adanorm: | |
| x_norm = film_modulate(self.norm3(x), shift=shift_mlp, scale=scale_mlp) | |
| x = x + (1 - gate_mlp) * self.mlp(x_norm) | |
| else: | |
| x = x + self.mlp(self.norm3(x)) | |
| return x | |
| class JointDiTBlock(nn.Module): | |
| """ | |
| A modified PixArt block with adaptive layer norm (adaLN-single) conditioning. | |
| """ | |
| def __init__(self, dim, context_dim=None, | |
| num_heads=8, mlp_ratio=4., | |
| qkv_bias=False, qk_scale=None, qk_norm=None, | |
| act_layer='gelu', norm_layer=nn.LayerNorm, | |
| time_fusion='none', | |
| ada_lora_rank=None, ada_lora_alpha=None, | |
| skip=(False, False), | |
| rope_mode=False, | |
| context_norm=False, | |
| use_checkpoint=False,): | |
| super().__init__() | |
| # no cross attention | |
| assert context_dim is None | |
| self.attn_norm_x = norm_layer(dim) | |
| self.attn_norm_c = norm_layer(dim) | |
| self.attn = JointAttention(dim=dim, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| qk_norm=qk_norm, | |
| rope_mode=rope_mode) | |
| self.ffn_norm_x = norm_layer(dim) | |
| self.ffn_norm_c = norm_layer(dim) | |
| self.mlp_x = FeedForward(dim=dim, mult=mlp_ratio, | |
| activation_fn=act_layer, dropout=0) | |
| self.mlp_c = FeedForward(dim=dim, mult=mlp_ratio, | |
| activation_fn=act_layer, dropout=0) | |
| # Zero-out the shift table | |
| self.use_adanorm = True if time_fusion != 'token' else False | |
| if self.use_adanorm: | |
| self.adaln = AdaLN(dim, ada_mode=time_fusion, | |
| r=ada_lora_rank, alpha=ada_lora_alpha) | |
| if skip is False: | |
| skip_x, skip_c = False, False | |
| else: | |
| skip_x, skip_c = skip | |
| self.skip_linear_x = nn.Linear(2 * dim, dim) if skip_x else None | |
| self.skip_linear_c = nn.Linear(2 * dim, dim) if skip_c else None | |
| self.use_checkpoint = use_checkpoint | |
| def forward(self, x, time_token=None, time_ada=None, | |
| skip=None, context=None, | |
| x_mask=None, context_mask=None, extras=None): | |
| if self.use_checkpoint: | |
| return checkpoint(self._forward, x, | |
| time_token, time_ada, skip, | |
| context, x_mask, context_mask, extras, | |
| use_reentrant=False) | |
| else: | |
| return self._forward(x, | |
| time_token, time_ada, skip, | |
| context, x_mask, context_mask, extras) | |
| def _forward(self, x, time_token=None, time_ada=None, | |
| skip=None, context=None, | |
| x_mask=None, context_mask=None, extras=None): | |
| assert context is None and context_mask is None | |
| context, x = x[:, :extras, :], x[:, extras:, :] | |
| context_mask, x_mask = x_mask[:, :extras], x_mask[:, extras:] | |
| if skip is not None: | |
| skip_c, skip_x = skip[:, :extras, :], skip[:, extras:, :] | |
| B, T, C = x.shape | |
| if self.skip_linear_x is not None: | |
| x = self.skip_linear_x(torch.cat([x, skip_x], dim=-1)) | |
| if self.skip_linear_c is not None: | |
| context = self.skip_linear_c(torch.cat([context, skip_c], dim=-1)) | |
| if self.use_adanorm: | |
| time_ada = self.adaln(time_token, time_ada) | |
| (shift_msa, scale_msa, gate_msa, | |
| shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1) | |
| # self attention | |
| x_norm = self.attn_norm_x(x) | |
| c_norm = self.attn_norm_c(context) | |
| if self.use_adanorm: | |
| x_norm = film_modulate(x_norm, shift=shift_msa, scale=scale_msa) | |
| x_out, c_out = self.attn(x_norm, context=c_norm, | |
| x_mask=x_mask, context_mask=context_mask, | |
| extras=extras) | |
| if self.use_adanorm: | |
| x = x + (1 - gate_msa) * x_out | |
| else: | |
| x = x + x_out | |
| context = context + c_out | |
| # mlp | |
| if self.use_adanorm: | |
| x_norm = film_modulate(self.ffn_norm_x(x), | |
| shift=shift_mlp, scale=scale_mlp) | |
| x = x + (1 - gate_mlp) * self.mlp_x(x_norm) | |
| else: | |
| x = x + self.mlp_x(self.ffn_norm_x(x)) | |
| c_norm = self.ffn_norm_c(context) | |
| context = context + self.mlp_c(c_norm) | |
| return torch.cat((context, x), dim=1) | |
| class FinalBlock(nn.Module): | |
| def __init__(self, embed_dim, patch_size, in_chans, | |
| img_size, | |
| input_type='2d', | |
| norm_layer=nn.LayerNorm, | |
| use_conv=True, | |
| use_adanorm=True): | |
| super().__init__() | |
| self.in_chans = in_chans | |
| self.img_size = img_size | |
| self.input_type = input_type | |
| self.norm = norm_layer(embed_dim) | |
| if use_adanorm: | |
| self.use_adanorm = True | |
| else: | |
| self.use_adanorm = False | |
| if input_type == '2d': | |
| self.patch_dim = patch_size ** 2 * in_chans | |
| self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True) | |
| if use_conv: | |
| self.final_layer = nn.Conv2d(self.in_chans, self.in_chans, | |
| 3, padding=1) | |
| else: | |
| self.final_layer = nn.Identity() | |
| elif input_type == '1d': | |
| self.patch_dim = patch_size * in_chans | |
| self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True) | |
| if use_conv: | |
| self.final_layer = nn.Conv1d(self.in_chans, self.in_chans, | |
| 3, padding=1) | |
| else: | |
| self.final_layer = nn.Identity() | |
| def forward(self, x, time_ada=None, extras=0): | |
| B, T, C = x.shape | |
| x = x[:, extras:, :] | |
| # only handle generation target | |
| if self.use_adanorm: | |
| shift, scale = time_ada.reshape(B, 2, -1).chunk(2, dim=1) | |
| x = film_modulate(self.norm(x), shift, scale) | |
| else: | |
| x = self.norm(x) | |
| x = self.linear(x) | |
| x = unpatchify(x, self.in_chans, self.input_type, self.img_size) | |
| x = self.final_layer(x) | |
| return x |