Spaces:
Running
Running
| import csv | |
| import os | |
| from datetime import datetime | |
| from typing import Optional, Union | |
| import gradio as gr | |
| from huggingface_hub import HfApi, Repository | |
| from export import convert | |
| DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/exporters" | |
| DATA_FILENAME = "data.csv" | |
| DATA_FILE = os.path.join("openvino", DATA_FILENAME) | |
| HF_TOKEN = os.environ.get("HF_WRITE_TOKEN") | |
| DATA_DIR = "exporters_data" | |
| repo = None | |
| if HF_TOKEN: | |
| repo = Repository(local_dir=DATA_DIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN) | |
| def export(token: str, model_id: str, task: str) -> str: | |
| if token == "" or model_id == "": | |
| return """ | |
| ### Invalid input 🐞 | |
| Please fill a token and model name. | |
| """ | |
| try: | |
| api = HfApi(token=token) | |
| error, commit_info = convert(api=api, model_id=model_id, task=task, force=False) | |
| if error != "0": | |
| return error | |
| print("[commit_info]", commit_info) | |
| # save in a private dataset | |
| if repo is not None: | |
| repo.git_pull(rebase=True) | |
| with open(os.path.join(DATA_DIR, DATA_FILE), "a") as csvfile: | |
| writer = csv.DictWriter(csvfile, fieldnames=["model_id", "pr_url", "time"]) | |
| writer.writerow( | |
| { | |
| "model_id": model_id, | |
| "pr_url": commit_info.pr_url, | |
| "time": str(datetime.now()), | |
| } | |
| ) | |
| commit_url = repo.push_to_hub() | |
| print("[dataset]", commit_url) | |
| return f"#### Success 🔥 Yay! This model was successfully exported and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url})" | |
| except Exception as e: | |
| return f"#### Error: {e}" | |
| TTILE_IMAGE = """ | |
| <div | |
| style=" | |
| display: block; | |
| margin-left: auto; | |
| margin-right: auto; | |
| width: 50%; | |
| " | |
| > | |
| <img src="https://huggingface.co/spaces/echarlaix/openvino-export/resolve/main/header.png"/> | |
| </div> | |
| """ | |
| TITLE = """ | |
| <div | |
| style=" | |
| display: inline-flex; | |
| align-items: center; | |
| text-align: center; | |
| max-width: 1400px; | |
| gap: 0.8rem; | |
| font-size: 2.2rem; | |
| " | |
| > | |
| <h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px;"> | |
| Export your Transformers and Diffusers model to OpenVINO with 🤗 Optimum Intel (experimental) | |
| </h1> | |
| </div> | |
| """ | |
| DESCRIPTION = """ | |
| This Space allows you to automatically export to the OpenVINO format various 🤗 Transformers and Diffusers PyTorch models hosted on the Hugging Face Hub. | |
| Once exported, you will be able to load the resulting model using the [🤗 Optimum Intel](https://huggingface.co/docs/optimum/intel/inference). | |
| To export your model, the steps are as following: | |
| - Paste a read-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens). Read access is enough given that we will open a PR against the source repo. | |
| - Input a model id from the Hub (for example: [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)) | |
| - Click "Export" | |
| - That’s it! You’ll get feedback if it works or not, and if it worked, you’ll get the URL of the opened PR 🔥 | |
| """ | |
| with gr.Blocks() as demo: | |
| gr.HTML(TTILE_IMAGE) | |
| gr.HTML(TITLE) | |
| with gr.Row(): | |
| with gr.Column(scale=50): | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Column(scale=50): | |
| input_token = gr.Textbox( | |
| max_lines=1, | |
| label="Hugging Face token", | |
| ) | |
| input_model = gr.Textbox( | |
| max_lines=1, | |
| label="Model name", | |
| placeholder="distilbert-base-uncased-finetuned-sst-2-english", | |
| ) | |
| input_task = gr.Textbox( | |
| value="auto", | |
| max_lines=1, | |
| label='Task (can be left to "auto", will be automatically inferred)', | |
| ) | |
| btn = gr.Button("Export") | |
| output = gr.Markdown(label="Output") | |
| btn.click( | |
| fn=export, | |
| inputs=[input_token, input_model, input_task], | |
| outputs=output, | |
| ) | |
| demo.launch() | |