Spaces:
Running
Running
fix
Browse files
app.py
CHANGED
|
@@ -30,17 +30,17 @@ from optimum.intel import (
|
|
| 30 |
from diffusers import ConfigMixin
|
| 31 |
|
| 32 |
_HEAD_TO_AUTOMODELS = {
|
| 33 |
-
"feature-extraction": OVModelForFeatureExtraction,
|
| 34 |
-
"fill-mask": OVModelForMaskedLM,
|
| 35 |
-
"text-generation": OVModelForCausalLM,
|
| 36 |
-
"text-classification": OVModelForSequenceClassification,
|
| 37 |
-
"token-classification": OVModelForTokenClassification,
|
| 38 |
-
"question-answering": OVModelForQuestionAnswering,
|
| 39 |
-
"image-classification": OVModelForImageClassification,
|
| 40 |
-
"audio-classification": OVModelForAudioClassification,
|
| 41 |
-
"stable-diffusion": OVStableDiffusionPipeline,
|
| 42 |
-
"stable-diffusion-xl": OVStableDiffusionXLPipeline,
|
| 43 |
-
"latent-consistency": OVLatentConsistencyModelPipeline,
|
| 44 |
}
|
| 45 |
|
| 46 |
def quantize_model(
|
|
@@ -58,143 +58,143 @@ def quantize_model(
|
|
| 58 |
if not model_id:
|
| 59 |
return f"### Invalid input 🐞 Please specify a model name, got {model_id}"
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
| 73 |
else:
|
| 74 |
-
task =
|
| 75 |
-
else:
|
| 76 |
-
task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token)
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
First make sure you have optimum-intel installed:
|
| 169 |
|
| 170 |
-
|
| 171 |
-
pip install optimum[openvino]
|
| 172 |
-
```
|
| 173 |
|
| 174 |
-
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
|
| 177 |
-
from optimum.intel import {auto_model_class}
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
```
|
| 182 |
-
"""
|
| 183 |
-
)
|
| 184 |
-
card_path = os.path.join(folder, "README.md")
|
| 185 |
-
card.save(card_path)
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
return f"### Error: {e}"
|
| 195 |
-
finally:
|
| 196 |
-
shutil.rmtree(folder, ignore_errors=True)
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
DESCRIPTION = """
|
| 200 |
This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/main/en/intel/openvino/optimization) to automatically apply NNCF weight only quantization on a model hosted on the [Hub](https://huggingface.co/models) and convert it to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) if not already.
|
|
|
|
| 30 |
from diffusers import ConfigMixin
|
| 31 |
|
| 32 |
_HEAD_TO_AUTOMODELS = {
|
| 33 |
+
"feature-extraction": "OVModelForFeatureExtraction",
|
| 34 |
+
"fill-mask": "OVModelForMaskedLM",
|
| 35 |
+
"text-generation": "OVModelForCausalLM",
|
| 36 |
+
"text-classification": "OVModelForSequenceClassification",
|
| 37 |
+
"token-classification": "OVModelForTokenClassification",
|
| 38 |
+
"question-answering": "OVModelForQuestionAnswering",
|
| 39 |
+
"image-classification": "OVModelForImageClassification",
|
| 40 |
+
"audio-classification": "OVModelForAudioClassification",
|
| 41 |
+
"stable-diffusion": "OVStableDiffusionPipeline",
|
| 42 |
+
"stable-diffusion-xl": "OVStableDiffusionXLPipeline",
|
| 43 |
+
"latent-consistency": "OVLatentConsistencyModelPipeline",
|
| 44 |
}
|
| 45 |
|
| 46 |
def quantize_model(
|
|
|
|
| 58 |
if not model_id:
|
| 59 |
return f"### Invalid input 🐞 Please specify a model name, got {model_id}"
|
| 60 |
|
| 61 |
+
try:
|
| 62 |
+
model_name = model_id.split("/")[-1]
|
| 63 |
+
username = whoami(oauth_token.token)["name"]
|
| 64 |
+
new_repo_id = f"{username}/{model_name}-openvino-{dtype}"
|
| 65 |
+
library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token)
|
| 66 |
|
| 67 |
+
if library_name == "diffusers":
|
| 68 |
+
ConfigMixin.config_name = "model_index.json"
|
| 69 |
+
class_name = ConfigMixin.load_config(model_id, token=oauth_token.token)["_class_name"].lower()
|
| 70 |
+
if "xl" in class_name:
|
| 71 |
+
task = "stable-diffusion-xl"
|
| 72 |
+
elif "consistency" in class_name:
|
| 73 |
+
task = "latent-consistency"
|
| 74 |
+
else:
|
| 75 |
+
task = "stable-diffusion"
|
| 76 |
else:
|
| 77 |
+
task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token)
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
if task == "text2text-generation":
|
| 80 |
+
return "Export of Seq2Seq models is currently disabled."
|
| 81 |
|
| 82 |
+
if task not in _HEAD_TO_AUTOMODELS:
|
| 83 |
+
return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
|
| 84 |
|
| 85 |
+
auto_model_class = _HEAD_TO_AUTOMODELS[task]
|
| 86 |
+
ov_files = _find_files_matching_pattern(
|
| 87 |
+
model_id,
|
| 88 |
+
pattern=r"(.*)?openvino(.*)?\_model.xml",
|
| 89 |
+
use_auth_token=oauth_token.token,
|
| 90 |
+
)
|
| 91 |
+
export = len(ov_files) == 0
|
| 92 |
|
| 93 |
+
is_int8 = dtype == "int8"
|
| 94 |
+
if library_name == "diffusers":
|
| 95 |
+
quant_method = "hybrid"
|
| 96 |
+
elif not is_int8:
|
| 97 |
+
quant_method = "awq"
|
| 98 |
+
else:
|
| 99 |
+
quant_method = "default"
|
| 100 |
|
| 101 |
+
quantization_config = OVWeightQuantizationConfig(
|
| 102 |
+
bits=8 if is_int8 else 4,
|
| 103 |
+
quant_method=quant_method,
|
| 104 |
+
dataset=None if quant_method=="default" else calibration_dataset,
|
| 105 |
+
ratio=1.0 if is_int8 else ratio,
|
| 106 |
+
)
|
| 107 |
|
| 108 |
+
api = HfApi(token=oauth_token.token)
|
| 109 |
+
if api.repo_exists(new_repo_id) and not overwritte:
|
| 110 |
+
return f"Model {new_repo_id} already exist, please set overwritte=True to push on an existing repo"
|
| 111 |
|
| 112 |
+
with TemporaryDirectory() as d:
|
| 113 |
+
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
| 114 |
+
os.makedirs(folder)
|
| 115 |
|
| 116 |
+
try:
|
| 117 |
+
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
|
| 118 |
+
ov_model = eval(auto_model_class).from_pretrained(
|
| 119 |
+
model_id,
|
| 120 |
+
export=export,
|
| 121 |
+
cache_dir=folder,
|
| 122 |
+
token=oauth_token.token,
|
| 123 |
+
quantization_config=quantization_config
|
| 124 |
+
)
|
| 125 |
+
ov_model.save_pretrained(folder)
|
| 126 |
+
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
|
| 127 |
+
new_repo_id = new_repo_url.repo_id
|
| 128 |
+
print("Repo created successfully!", new_repo_url)
|
| 129 |
|
| 130 |
+
folder = Path(folder)
|
| 131 |
+
for dir_name in (
|
| 132 |
+
"",
|
| 133 |
+
"vae_encoder",
|
| 134 |
+
"vae_decoder",
|
| 135 |
+
"text_encoder",
|
| 136 |
+
"text_encoder_2",
|
| 137 |
+
"unet",
|
| 138 |
+
"tokenizer",
|
| 139 |
+
"tokenizer_2",
|
| 140 |
+
"scheduler",
|
| 141 |
+
"feature_extractor",
|
| 142 |
+
):
|
| 143 |
+
if not (folder / dir_name).is_dir():
|
| 144 |
+
continue
|
| 145 |
+
for file_path in (folder / dir_name).iterdir():
|
| 146 |
+
if file_path.is_file():
|
| 147 |
+
try:
|
| 148 |
+
api.upload_file(
|
| 149 |
+
path_or_fileobj=file_path,
|
| 150 |
+
path_in_repo=os.path.join(dir_name, file_path.name),
|
| 151 |
+
repo_id=new_repo_id,
|
| 152 |
+
)
|
| 153 |
+
except Exception as e:
|
| 154 |
+
return f"Error uploading file {file_path}: {e}"
|
| 155 |
|
| 156 |
+
try:
|
| 157 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
| 158 |
+
except:
|
| 159 |
+
card = ModelCard("")
|
| 160 |
|
| 161 |
+
if card.data.tags is None:
|
| 162 |
+
card.data.tags = []
|
| 163 |
+
card.data.tags.append("openvino")
|
| 164 |
+
card.data.base_model = model_id
|
| 165 |
+
card.text = dedent(
|
| 166 |
+
f"""
|
| 167 |
+
This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and was exported to the OpenVINO format using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space.
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
First make sure you have optimum-intel installed:
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
```bash
|
| 172 |
+
pip install optimum[openvino]
|
| 173 |
+
```
|
| 174 |
|
| 175 |
+
To load your model you can do as follows:
|
|
|
|
| 176 |
|
| 177 |
+
```python
|
| 178 |
+
from optimum.intel import {auto_model_class}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
model_id = "{new_repo_id}"
|
| 181 |
+
model = {auto_model_class}.from_pretrained(model_id)
|
| 182 |
+
```
|
| 183 |
+
"""
|
| 184 |
+
)
|
| 185 |
+
card_path = os.path.join(folder, "README.md")
|
| 186 |
+
card.save(card_path)
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
api.upload_file(
|
| 189 |
+
path_or_fileobj=card_path,
|
| 190 |
+
path_in_repo="README.md",
|
| 191 |
+
repo_id=new_repo_id,
|
| 192 |
+
)
|
| 193 |
+
return f"This model was successfully quantized, find it under your repo {new_repo_url}'"
|
| 194 |
+
finally:
|
| 195 |
+
shutil.rmtree(folder, ignore_errors=True)
|
| 196 |
+
except Exception as e:
|
| 197 |
+
return f"### Error: {e}"
|
| 198 |
|
| 199 |
DESCRIPTION = """
|
| 200 |
This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/main/en/intel/openvino/optimization) to automatically apply NNCF weight only quantization on a model hosted on the [Hub](https://huggingface.co/models) and convert it to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) if not already.
|