Spaces:
Sleeping
Sleeping
Change data provider
Browse files- app.py +35 -54
- requirements.txt +3 -3
- schemas.py +16 -0
app.py
CHANGED
|
@@ -1,34 +1,29 @@
|
|
| 1 |
-
|
| 2 |
-
import zipfile
|
| 3 |
-
import os
|
| 4 |
-
import warnings
|
| 5 |
-
from openai import OpenAI
|
| 6 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import bm25s
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
import nltk
|
| 11 |
from fastapi import FastAPI
|
| 12 |
-
from fastapi.responses import FileResponse
|
| 13 |
from fastapi.middleware.cors import CORSMiddleware
|
| 14 |
-
|
| 15 |
-
from
|
| 16 |
-
from sklearn.preprocessing import MinMaxScaler
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
if os.path.exists("bm25s.zip"):
|
| 22 |
-
with zipfile.ZipFile("bm25s.zip", 'r') as zip_ref:
|
| 23 |
-
zip_ref.extractall(".")
|
| 24 |
-
bm25_engine = bm25s.BM25.load("3gpp_bm25_docs", load_corpus=True)
|
| 25 |
-
lemmatizer = WordNetLemmatizer()
|
| 26 |
-
llm = OpenAI(api_key=os.environ.get("GEMINI"), base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
app = FastAPI(title="RAGnarok",
|
| 31 |
-
description="
|
| 32 |
|
| 33 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 34 |
|
|
@@ -44,46 +39,22 @@ app.add_middleware(
|
|
| 44 |
allow_headers=["*"],
|
| 45 |
)
|
| 46 |
|
| 47 |
-
class SearchRequest(BaseModel):
|
| 48 |
-
keyword: str
|
| 49 |
-
threshold: int
|
| 50 |
-
|
| 51 |
-
class SearchResponse(BaseModel):
|
| 52 |
-
results: List[Dict[str, Any]]
|
| 53 |
-
|
| 54 |
-
class ChatRequest(BaseModel):
|
| 55 |
-
messages: List[Dict[str, str]]
|
| 56 |
-
model: str
|
| 57 |
-
|
| 58 |
-
class ChatResponse(BaseModel):
|
| 59 |
-
response: str
|
| 60 |
-
|
| 61 |
@app.get("/")
|
| 62 |
-
|
| 63 |
return FileResponse(os.path.join("templates", "index.html"))
|
| 64 |
|
| 65 |
-
@app.post("/chat", response_model=ChatResponse)
|
| 66 |
-
def question_the_sources(req: ChatRequest):
|
| 67 |
-
model = req.model
|
| 68 |
-
resp = llm.chat.completions.create(
|
| 69 |
-
messages=req.messages,
|
| 70 |
-
model=model
|
| 71 |
-
)
|
| 72 |
-
return ChatResponse(response=resp.choices[0].message.content)
|
| 73 |
-
|
| 74 |
@app.post("/search", response_model=SearchResponse)
|
| 75 |
def search_specifications(req: SearchRequest):
|
| 76 |
keywords = req.keyword
|
| 77 |
threshold = req.threshold
|
| 78 |
-
query = lemmatizer.lemmatize(keywords)
|
| 79 |
results_out = []
|
| 80 |
-
query_tokens = bm25s.tokenize(
|
| 81 |
-
results, scores =
|
| 82 |
|
| 83 |
def calculate_boosted_score(metadata, score, query):
|
| 84 |
-
title =
|
| 85 |
-
q =
|
| 86 |
-
spec_id_presence = 0.5 if
|
| 87 |
booster = len(q & title) * 0.5
|
| 88 |
return score + spec_id_presence + booster
|
| 89 |
|
|
@@ -96,7 +67,7 @@ def search_specifications(req: SearchRequest):
|
|
| 96 |
score = scores[0, i]
|
| 97 |
spec = doc["metadata"]["id"]
|
| 98 |
|
| 99 |
-
boosted_score = calculate_boosted_score(doc['metadata'], score,
|
| 100 |
|
| 101 |
if spec not in spec_scores or boosted_score > spec_scores[spec]:
|
| 102 |
spec_scores[spec] = boosted_score
|
|
@@ -135,4 +106,14 @@ def search_specifications(req: SearchRequest):
|
|
| 135 |
break
|
| 136 |
results_out.append({'id': metadata['id'], 'title': metadata['title'], 'section': metadata['section_title'], 'content': details['doc']['text'], 'similarity': int(details['normalized_score']*100)})
|
| 137 |
|
| 138 |
-
return SearchResponse(results=results_out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
+
from schemas import *
|
| 4 |
+
|
| 5 |
+
os.environ["CURL_CA_BUNDLE"] = ""
|
| 6 |
+
warnings.filterwarnings("ignore")
|
| 7 |
+
load_dotenv()
|
| 8 |
+
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
import bm25s
|
| 11 |
+
from bm25s.hf import BM25HF
|
| 12 |
+
|
|
|
|
| 13 |
from fastapi import FastAPI
|
|
|
|
| 14 |
from fastapi.middleware.cors import CORSMiddleware
|
| 15 |
+
from fastapi.responses import FileResponse
|
| 16 |
+
from fastapi.staticfiles import StaticFiles
|
|
|
|
| 17 |
|
| 18 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 19 |
+
import numpy as np
|
| 20 |
|
| 21 |
+
import litellm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
bm25_index = BM25HF.load_from_hub("OrganizedProgrammers/3GPPBM25IndexSections", load_corpus=True, token=os.environ["HF_TOKEN"])
|
| 24 |
|
| 25 |
app = FastAPI(title="RAGnarok",
|
| 26 |
+
description="Speak with the specifications")
|
| 27 |
|
| 28 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 29 |
|
|
|
|
| 39 |
allow_headers=["*"],
|
| 40 |
)
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
@app.get("/")
|
| 43 |
+
def main_menu():
|
| 44 |
return FileResponse(os.path.join("templates", "index.html"))
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
@app.post("/search", response_model=SearchResponse)
|
| 47 |
def search_specifications(req: SearchRequest):
|
| 48 |
keywords = req.keyword
|
| 49 |
threshold = req.threshold
|
|
|
|
| 50 |
results_out = []
|
| 51 |
+
query_tokens = bm25s.tokenize(keywords)
|
| 52 |
+
results, scores = bm25_index.retrieve(query_tokens, k=len(bm25_index.corpus))
|
| 53 |
|
| 54 |
def calculate_boosted_score(metadata, score, query):
|
| 55 |
+
title = set(metadata['title'].lower().split())
|
| 56 |
+
q = set(query.lower().split())
|
| 57 |
+
spec_id_presence = 0.5 if metadata['id'].lower() in q else 0
|
| 58 |
booster = len(q & title) * 0.5
|
| 59 |
return score + spec_id_presence + booster
|
| 60 |
|
|
|
|
| 67 |
score = scores[0, i]
|
| 68 |
spec = doc["metadata"]["id"]
|
| 69 |
|
| 70 |
+
boosted_score = calculate_boosted_score(doc['metadata'], score, keywords)
|
| 71 |
|
| 72 |
if spec not in spec_scores or boosted_score > spec_scores[spec]:
|
| 73 |
spec_scores[spec] = boosted_score
|
|
|
|
| 106 |
break
|
| 107 |
results_out.append({'id': metadata['id'], 'title': metadata['title'], 'section': metadata['section_title'], 'content': details['doc']['text'], 'similarity': int(details['normalized_score']*100)})
|
| 108 |
|
| 109 |
+
return SearchResponse(results=results_out)
|
| 110 |
+
|
| 111 |
+
@app.post("/chat", response_model=ChatResponse)
|
| 112 |
+
def questions_the_sources(req: ChatRequest):
|
| 113 |
+
model = req.model
|
| 114 |
+
resp = litellm.completion(
|
| 115 |
+
model=f"gemini/{model}",
|
| 116 |
+
messages=req.messages,
|
| 117 |
+
api_key=os.environ["GEMINI"]
|
| 118 |
+
)
|
| 119 |
+
return ChatResponse(response=resp.choices[0].message.content)
|
requirements.txt
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
openai
|
| 2 |
fastapi
|
| 3 |
uvicorn[standard]
|
| 4 |
python-dotenv
|
| 5 |
bm25s[full]
|
| 6 |
-
|
|
|
|
| 7 |
numpy
|
| 8 |
-
|
|
|
|
|
|
|
| 1 |
fastapi
|
| 2 |
uvicorn[standard]
|
| 3 |
python-dotenv
|
| 4 |
bm25s[full]
|
| 5 |
+
scikit-learn
|
| 6 |
+
litellm
|
| 7 |
numpy
|
| 8 |
+
datasets
|
schemas.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
|
| 4 |
+
class SearchRequest(BaseModel):
|
| 5 |
+
keyword: str
|
| 6 |
+
threshold: int
|
| 7 |
+
|
| 8 |
+
class SearchResponse(BaseModel):
|
| 9 |
+
results: List[Dict[str, Any]]
|
| 10 |
+
|
| 11 |
+
class ChatRequest(BaseModel):
|
| 12 |
+
messages: List[Dict[str, str]]
|
| 13 |
+
model: str
|
| 14 |
+
|
| 15 |
+
class ChatResponse(BaseModel):
|
| 16 |
+
response: str
|