Spaces:
Running
on
Zero
Running
on
Zero
| from __future__ import annotations | |
| import io | |
| import logging | |
| from typing import Optional, Union | |
| from comfy.utils import common_upscale | |
| from comfy_api.input_impl import VideoFromFile | |
| from comfy_api.util import VideoContainer, VideoCodec | |
| from comfy_api.input.video_types import VideoInput | |
| from comfy_api.input.basic_types import AudioInput | |
| from comfy_api_nodes.apis.client import ( | |
| ApiClient, | |
| ApiEndpoint, | |
| HttpMethod, | |
| SynchronousOperation, | |
| UploadRequest, | |
| UploadResponse, | |
| ) | |
| from server import PromptServer | |
| import numpy as np | |
| from PIL import Image | |
| import requests | |
| import torch | |
| import math | |
| import base64 | |
| import uuid | |
| from io import BytesIO | |
| import av | |
| def download_url_to_video_output(video_url: str, timeout: int = None) -> VideoFromFile: | |
| """Downloads a video from a URL and returns a `VIDEO` output. | |
| Args: | |
| video_url: The URL of the video to download. | |
| Returns: | |
| A Comfy node `VIDEO` output. | |
| """ | |
| video_io = download_url_to_bytesio(video_url, timeout) | |
| if video_io is None: | |
| error_msg = f"Failed to download video from {video_url}" | |
| logging.error(error_msg) | |
| raise ValueError(error_msg) | |
| return VideoFromFile(video_io) | |
| def downscale_image_tensor(image, total_pixels=1536 * 1024) -> torch.Tensor: | |
| """Downscale input image tensor to roughly the specified total pixels.""" | |
| samples = image.movedim(-1, 1) | |
| total = int(total_pixels) | |
| scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) | |
| if scale_by >= 1: | |
| return image | |
| width = round(samples.shape[3] * scale_by) | |
| height = round(samples.shape[2] * scale_by) | |
| s = common_upscale(samples, width, height, "lanczos", "disabled") | |
| s = s.movedim(1, -1) | |
| return s | |
| def validate_and_cast_response( | |
| response, timeout: int = None, node_id: Union[str, None] = None | |
| ) -> torch.Tensor: | |
| """Validates and casts a response to a torch.Tensor. | |
| Args: | |
| response: The response to validate and cast. | |
| timeout: Request timeout in seconds. Defaults to None (no timeout). | |
| Returns: | |
| A torch.Tensor representing the image (1, H, W, C). | |
| Raises: | |
| ValueError: If the response is not valid. | |
| """ | |
| # validate raw JSON response | |
| data = response.data | |
| if not data or len(data) == 0: | |
| raise ValueError("No images returned from API endpoint") | |
| # Initialize list to store image tensors | |
| image_tensors: list[torch.Tensor] = [] | |
| # Process each image in the data array | |
| for image_data in data: | |
| image_url = image_data.url | |
| b64_data = image_data.b64_json | |
| if not image_url and not b64_data: | |
| raise ValueError("No image was generated in the response") | |
| if b64_data: | |
| img_data = base64.b64decode(b64_data) | |
| img = Image.open(io.BytesIO(img_data)) | |
| elif image_url: | |
| if node_id: | |
| PromptServer.instance.send_progress_text( | |
| f"Result URL: {image_url}", node_id | |
| ) | |
| img_response = requests.get(image_url, timeout=timeout) | |
| if img_response.status_code != 200: | |
| raise ValueError("Failed to download the image") | |
| img = Image.open(io.BytesIO(img_response.content)) | |
| img = img.convert("RGBA") | |
| # Convert to numpy array, normalize to float32 between 0 and 1 | |
| img_array = np.array(img).astype(np.float32) / 255.0 | |
| img_tensor = torch.from_numpy(img_array) | |
| # Add to list of tensors | |
| image_tensors.append(img_tensor) | |
| return torch.stack(image_tensors, dim=0) | |
| def validate_aspect_ratio( | |
| aspect_ratio: str, | |
| minimum_ratio: float, | |
| maximum_ratio: float, | |
| minimum_ratio_str: str, | |
| maximum_ratio_str: str, | |
| ) -> float: | |
| """Validates and casts an aspect ratio string to a float. | |
| Args: | |
| aspect_ratio: The aspect ratio string to validate. | |
| minimum_ratio: The minimum aspect ratio. | |
| maximum_ratio: The maximum aspect ratio. | |
| minimum_ratio_str: The minimum aspect ratio string. | |
| maximum_ratio_str: The maximum aspect ratio string. | |
| Returns: | |
| The validated and cast aspect ratio. | |
| Raises: | |
| Exception: If the aspect ratio is not valid. | |
| """ | |
| # get ratio values | |
| numbers = aspect_ratio.split(":") | |
| if len(numbers) != 2: | |
| raise TypeError( | |
| f"Aspect ratio must be in the format X:Y, such as 16:9, but was {aspect_ratio}." | |
| ) | |
| try: | |
| numerator = int(numbers[0]) | |
| denominator = int(numbers[1]) | |
| except ValueError as exc: | |
| raise TypeError( | |
| f"Aspect ratio must contain numbers separated by ':', such as 16:9, but was {aspect_ratio}." | |
| ) from exc | |
| calculated_ratio = numerator / denominator | |
| # if not close to minimum and maximum, check bounds | |
| if not math.isclose(calculated_ratio, minimum_ratio) or not math.isclose( | |
| calculated_ratio, maximum_ratio | |
| ): | |
| if calculated_ratio < minimum_ratio: | |
| raise TypeError( | |
| f"Aspect ratio cannot reduce to any less than {minimum_ratio_str} ({minimum_ratio}), but was {aspect_ratio} ({calculated_ratio})." | |
| ) | |
| elif calculated_ratio > maximum_ratio: | |
| raise TypeError( | |
| f"Aspect ratio cannot reduce to any greater than {maximum_ratio_str} ({maximum_ratio}), but was {aspect_ratio} ({calculated_ratio})." | |
| ) | |
| return aspect_ratio | |
| def mimetype_to_extension(mime_type: str) -> str: | |
| """Converts a MIME type to a file extension.""" | |
| return mime_type.split("/")[-1].lower() | |
| def download_url_to_bytesio(url: str, timeout: int = None) -> BytesIO: | |
| """Downloads content from a URL using requests and returns it as BytesIO. | |
| Args: | |
| url: The URL to download. | |
| timeout: Request timeout in seconds. Defaults to None (no timeout). | |
| Returns: | |
| BytesIO object containing the downloaded content. | |
| """ | |
| response = requests.get(url, stream=True, timeout=timeout) | |
| response.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX) | |
| return BytesIO(response.content) | |
| def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch.Tensor: | |
| """Converts image data from BytesIO to a torch.Tensor. | |
| Args: | |
| image_bytesio: BytesIO object containing the image data. | |
| mode: The PIL mode to convert the image to (e.g., "RGB", "RGBA"). | |
| Returns: | |
| A torch.Tensor representing the image (1, H, W, C). | |
| Raises: | |
| PIL.UnidentifiedImageError: If the image data cannot be identified. | |
| ValueError: If the specified mode is invalid. | |
| """ | |
| image = Image.open(image_bytesio) | |
| image = image.convert(mode) | |
| image_array = np.array(image).astype(np.float32) / 255.0 | |
| return torch.from_numpy(image_array).unsqueeze(0) | |
| def download_url_to_image_tensor(url: str, timeout: int = None) -> torch.Tensor: | |
| """Downloads an image from a URL and returns a [B, H, W, C] tensor.""" | |
| image_bytesio = download_url_to_bytesio(url, timeout) | |
| return bytesio_to_image_tensor(image_bytesio) | |
| def process_image_response(response: requests.Response) -> torch.Tensor: | |
| """Uses content from a Response object and converts it to a torch.Tensor""" | |
| return bytesio_to_image_tensor(BytesIO(response.content)) | |
| def _tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image: | |
| """Converts a single torch.Tensor image [H, W, C] to a PIL Image, optionally downscaling.""" | |
| if len(image.shape) > 3: | |
| image = image[0] | |
| # TODO: remove alpha if not allowed and present | |
| input_tensor = image.cpu() | |
| input_tensor = downscale_image_tensor( | |
| input_tensor.unsqueeze(0), total_pixels=total_pixels | |
| ).squeeze() | |
| image_np = (input_tensor.numpy() * 255).astype(np.uint8) | |
| img = Image.fromarray(image_np) | |
| return img | |
| def _pil_to_bytesio(img: Image.Image, mime_type: str = "image/png") -> BytesIO: | |
| """Converts a PIL Image to a BytesIO object.""" | |
| if not mime_type: | |
| mime_type = "image/png" | |
| img_byte_arr = io.BytesIO() | |
| # Derive PIL format from MIME type (e.g., 'image/png' -> 'PNG') | |
| pil_format = mime_type.split("/")[-1].upper() | |
| if pil_format == "JPG": | |
| pil_format = "JPEG" | |
| img.save(img_byte_arr, format=pil_format) | |
| img_byte_arr.seek(0) | |
| return img_byte_arr | |
| def tensor_to_bytesio( | |
| image: torch.Tensor, | |
| name: Optional[str] = None, | |
| total_pixels: int = 2048 * 2048, | |
| mime_type: str = "image/png", | |
| ) -> BytesIO: | |
| """Converts a torch.Tensor image to a named BytesIO object. | |
| Args: | |
| image: Input torch.Tensor image. | |
| name: Optional filename for the BytesIO object. | |
| total_pixels: Maximum total pixels for potential downscaling. | |
| mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4'). | |
| Returns: | |
| Named BytesIO object containing the image data. | |
| """ | |
| if not mime_type: | |
| mime_type = "image/png" | |
| pil_image = _tensor_to_pil(image, total_pixels=total_pixels) | |
| img_binary = _pil_to_bytesio(pil_image, mime_type=mime_type) | |
| img_binary.name = ( | |
| f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}" | |
| ) | |
| return img_binary | |
| def tensor_to_base64_string( | |
| image_tensor: torch.Tensor, | |
| total_pixels: int = 2048 * 2048, | |
| mime_type: str = "image/png", | |
| ) -> str: | |
| """Convert [B, H, W, C] or [H, W, C] tensor to a base64 string. | |
| Args: | |
| image_tensor: Input torch.Tensor image. | |
| total_pixels: Maximum total pixels for potential downscaling. | |
| mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4'). | |
| Returns: | |
| Base64 encoded string of the image. | |
| """ | |
| pil_image = _tensor_to_pil(image_tensor, total_pixels=total_pixels) | |
| img_byte_arr = _pil_to_bytesio(pil_image, mime_type=mime_type) | |
| img_bytes = img_byte_arr.getvalue() | |
| # Encode bytes to base64 string | |
| base64_encoded_string = base64.b64encode(img_bytes).decode("utf-8") | |
| return base64_encoded_string | |
| def tensor_to_data_uri( | |
| image_tensor: torch.Tensor, | |
| total_pixels: int = 2048 * 2048, | |
| mime_type: str = "image/png", | |
| ) -> str: | |
| """Converts a tensor image to a Data URI string. | |
| Args: | |
| image_tensor: Input torch.Tensor image. | |
| total_pixels: Maximum total pixels for potential downscaling. | |
| mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp'). | |
| Returns: | |
| Data URI string (e.g., 'data:image/png;base64,...'). | |
| """ | |
| base64_string = tensor_to_base64_string(image_tensor, total_pixels, mime_type) | |
| return f"data:{mime_type};base64,{base64_string}" | |
| def upload_file_to_comfyapi( | |
| file_bytes_io: BytesIO, | |
| filename: str, | |
| upload_mime_type: str, | |
| auth_kwargs: Optional[dict[str,str]] = None, | |
| ) -> str: | |
| """ | |
| Uploads a single file to ComfyUI API and returns its download URL. | |
| Args: | |
| file_bytes_io: BytesIO object containing the file data. | |
| filename: The filename of the file. | |
| upload_mime_type: MIME type of the file. | |
| auth_kwargs: Optional authentication token(s). | |
| Returns: | |
| The download URL for the uploaded file. | |
| """ | |
| request_object = UploadRequest(file_name=filename, content_type=upload_mime_type) | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/customers/storage", | |
| method=HttpMethod.POST, | |
| request_model=UploadRequest, | |
| response_model=UploadResponse, | |
| ), | |
| request=request_object, | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response: UploadResponse = operation.execute() | |
| upload_response = ApiClient.upload_file( | |
| response.upload_url, file_bytes_io, content_type=upload_mime_type | |
| ) | |
| upload_response.raise_for_status() | |
| return response.download_url | |
| def upload_video_to_comfyapi( | |
| video: VideoInput, | |
| auth_kwargs: Optional[dict[str,str]] = None, | |
| container: VideoContainer = VideoContainer.MP4, | |
| codec: VideoCodec = VideoCodec.H264, | |
| max_duration: Optional[int] = None, | |
| ) -> str: | |
| """ | |
| Uploads a single video to ComfyUI API and returns its download URL. | |
| Uses the specified container and codec for saving the video before upload. | |
| Args: | |
| video: VideoInput object (Comfy VIDEO type). | |
| auth_kwargs: Optional authentication token(s). | |
| container: The video container format to use (default: MP4). | |
| codec: The video codec to use (default: H264). | |
| max_duration: Optional maximum duration of the video in seconds. If the video is longer than this, an error will be raised. | |
| Returns: | |
| The download URL for the uploaded video file. | |
| """ | |
| if max_duration is not None: | |
| try: | |
| actual_duration = video.duration_seconds | |
| if actual_duration is not None and actual_duration > max_duration: | |
| raise ValueError( | |
| f"Video duration ({actual_duration:.2f}s) exceeds the maximum allowed ({max_duration}s)." | |
| ) | |
| except Exception as e: | |
| logging.error(f"Error getting video duration: {e}") | |
| raise ValueError(f"Could not verify video duration from source: {e}") from e | |
| upload_mime_type = f"video/{container.value.lower()}" | |
| filename = f"uploaded_video.{container.value.lower()}" | |
| # Convert VideoInput to BytesIO using specified container/codec | |
| video_bytes_io = io.BytesIO() | |
| video.save_to(video_bytes_io, format=container, codec=codec) | |
| video_bytes_io.seek(0) | |
| return upload_file_to_comfyapi( | |
| video_bytes_io, filename, upload_mime_type, auth_kwargs | |
| ) | |
| def audio_tensor_to_contiguous_ndarray(waveform: torch.Tensor) -> np.ndarray: | |
| """ | |
| Prepares audio waveform for av library by converting to a contiguous numpy array. | |
| Args: | |
| waveform: a tensor of shape (1, channels, samples) derived from a Comfy `AUDIO` type. | |
| Returns: | |
| Contiguous numpy array of the audio waveform. If the audio was batched, | |
| the first item is taken. | |
| """ | |
| if waveform.ndim != 3 or waveform.shape[0] != 1: | |
| raise ValueError("Expected waveform tensor shape (1, channels, samples)") | |
| # If batch is > 1, take first item | |
| if waveform.shape[0] > 1: | |
| waveform = waveform[0] | |
| # Prepare for av: remove batch dim, move to CPU, make contiguous, convert to numpy array | |
| audio_data_np = waveform.squeeze(0).cpu().contiguous().numpy() | |
| if audio_data_np.dtype != np.float32: | |
| audio_data_np = audio_data_np.astype(np.float32) | |
| return audio_data_np | |
| def audio_ndarray_to_bytesio( | |
| audio_data_np: np.ndarray, | |
| sample_rate: int, | |
| container_format: str = "mp4", | |
| codec_name: str = "aac", | |
| ) -> BytesIO: | |
| """ | |
| Encodes a numpy array of audio data into a BytesIO object. | |
| """ | |
| audio_bytes_io = io.BytesIO() | |
| with av.open(audio_bytes_io, mode="w", format=container_format) as output_container: | |
| audio_stream = output_container.add_stream(codec_name, rate=sample_rate) | |
| frame = av.AudioFrame.from_ndarray( | |
| audio_data_np, | |
| format="fltp", | |
| layout="stereo" if audio_data_np.shape[0] > 1 else "mono", | |
| ) | |
| frame.sample_rate = sample_rate | |
| frame.pts = 0 | |
| for packet in audio_stream.encode(frame): | |
| output_container.mux(packet) | |
| # Flush stream | |
| for packet in audio_stream.encode(None): | |
| output_container.mux(packet) | |
| audio_bytes_io.seek(0) | |
| return audio_bytes_io | |
| def upload_audio_to_comfyapi( | |
| audio: AudioInput, | |
| auth_kwargs: Optional[dict[str,str]] = None, | |
| container_format: str = "mp4", | |
| codec_name: str = "aac", | |
| mime_type: str = "audio/mp4", | |
| filename: str = "uploaded_audio.mp4", | |
| ) -> str: | |
| """ | |
| Uploads a single audio input to ComfyUI API and returns its download URL. | |
| Encodes the raw waveform into the specified format before uploading. | |
| Args: | |
| audio: a Comfy `AUDIO` type (contains waveform tensor and sample_rate) | |
| auth_kwargs: Optional authentication token(s). | |
| Returns: | |
| The download URL for the uploaded audio file. | |
| """ | |
| sample_rate: int = audio["sample_rate"] | |
| waveform: torch.Tensor = audio["waveform"] | |
| audio_data_np = audio_tensor_to_contiguous_ndarray(waveform) | |
| audio_bytes_io = audio_ndarray_to_bytesio( | |
| audio_data_np, sample_rate, container_format, codec_name | |
| ) | |
| return upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_kwargs) | |
| def upload_images_to_comfyapi( | |
| image: torch.Tensor, max_images=8, auth_kwargs: Optional[dict[str,str]] = None, mime_type: Optional[str] = None | |
| ) -> list[str]: | |
| """ | |
| Uploads images to ComfyUI API and returns download URLs. | |
| To upload multiple images, stack them in the batch dimension first. | |
| Args: | |
| image: Input torch.Tensor image. | |
| max_images: Maximum number of images to upload. | |
| auth_kwargs: Optional authentication token(s). | |
| mime_type: Optional MIME type for the image. | |
| """ | |
| # if batch, try to upload each file if max_images is greater than 0 | |
| idx_image = 0 | |
| download_urls: list[str] = [] | |
| is_batch = len(image.shape) > 3 | |
| batch_length = 1 | |
| if is_batch: | |
| batch_length = image.shape[0] | |
| while True: | |
| curr_image = image | |
| if len(image.shape) > 3: | |
| curr_image = image[idx_image] | |
| # get BytesIO version of image | |
| img_binary = tensor_to_bytesio(curr_image, mime_type=mime_type) | |
| # first, request upload/download urls from comfy API | |
| if not mime_type: | |
| request_object = UploadRequest(file_name=img_binary.name) | |
| else: | |
| request_object = UploadRequest( | |
| file_name=img_binary.name, content_type=mime_type | |
| ) | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/customers/storage", | |
| method=HttpMethod.POST, | |
| request_model=UploadRequest, | |
| response_model=UploadResponse, | |
| ), | |
| request=request_object, | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response = operation.execute() | |
| upload_response = ApiClient.upload_file( | |
| response.upload_url, img_binary, content_type=mime_type | |
| ) | |
| # verify success | |
| try: | |
| upload_response.raise_for_status() | |
| except requests.exceptions.HTTPError as e: | |
| raise ValueError(f"Could not upload one or more images: {e}") from e | |
| # add download_url to list | |
| download_urls.append(response.download_url) | |
| idx_image += 1 | |
| # stop uploading additional files if done | |
| if is_batch and max_images > 0: | |
| if idx_image >= max_images: | |
| break | |
| if idx_image >= batch_length: | |
| break | |
| return download_urls | |
| def resize_mask_to_image(mask: torch.Tensor, image: torch.Tensor, | |
| upscale_method="nearest-exact", crop="disabled", | |
| allow_gradient=True, add_channel_dim=False): | |
| """ | |
| Resize mask to be the same dimensions as an image, while maintaining proper format for API calls. | |
| """ | |
| _, H, W, _ = image.shape | |
| mask = mask.unsqueeze(-1) | |
| mask = mask.movedim(-1,1) | |
| mask = common_upscale(mask, width=W, height=H, upscale_method=upscale_method, crop=crop) | |
| mask = mask.movedim(1,-1) | |
| if not add_channel_dim: | |
| mask = mask.squeeze(-1) | |
| if not allow_gradient: | |
| mask = (mask > 0.5).float() | |
| return mask | |
| def validate_string(string: str, strip_whitespace=True, field_name="prompt", min_length=None, max_length=None): | |
| if strip_whitespace: | |
| string = string.strip() | |
| if min_length and len(string) < min_length: | |
| raise Exception(f"Field '{field_name}' cannot be shorter than {min_length} characters; was {len(string)} characters long.") | |
| if max_length and len(string) > max_length: | |
| raise Exception(f" Field '{field_name} cannot be longer than {max_length} characters; was {len(string)} characters long.") | |
| if not string: | |
| raise Exception(f"Field '{field_name}' cannot be empty.") | |