Spaces:
Running
on
Zero
Running
on
Zero
| # Original from: https://github.com/ace-step/ACE-Step/blob/main/models/attention.py | |
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Tuple, Union, Optional | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| import comfy.model_management | |
| from comfy.ldm.modules.attention import optimized_attention | |
| class Attention(nn.Module): | |
| def __init__( | |
| self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| kv_heads: Optional[int] = None, | |
| dim_head: int = 64, | |
| dropout: float = 0.0, | |
| bias: bool = False, | |
| qk_norm: Optional[str] = None, | |
| added_kv_proj_dim: Optional[int] = None, | |
| added_proj_bias: Optional[bool] = True, | |
| out_bias: bool = True, | |
| scale_qk: bool = True, | |
| only_cross_attention: bool = False, | |
| eps: float = 1e-5, | |
| rescale_output_factor: float = 1.0, | |
| residual_connection: bool = False, | |
| processor=None, | |
| out_dim: int = None, | |
| out_context_dim: int = None, | |
| context_pre_only=None, | |
| pre_only=False, | |
| elementwise_affine: bool = True, | |
| is_causal: bool = False, | |
| dtype=None, device=None, operations=None | |
| ): | |
| super().__init__() | |
| self.inner_dim = out_dim if out_dim is not None else dim_head * heads | |
| self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads | |
| self.query_dim = query_dim | |
| self.use_bias = bias | |
| self.is_cross_attention = cross_attention_dim is not None | |
| self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
| self.rescale_output_factor = rescale_output_factor | |
| self.residual_connection = residual_connection | |
| self.dropout = dropout | |
| self.fused_projections = False | |
| self.out_dim = out_dim if out_dim is not None else query_dim | |
| self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim | |
| self.context_pre_only = context_pre_only | |
| self.pre_only = pre_only | |
| self.is_causal = is_causal | |
| self.scale_qk = scale_qk | |
| self.scale = dim_head**-0.5 if self.scale_qk else 1.0 | |
| self.heads = out_dim // dim_head if out_dim is not None else heads | |
| # for slice_size > 0 the attention score computation | |
| # is split across the batch axis to save memory | |
| # You can set slice_size with `set_attention_slice` | |
| self.sliceable_head_dim = heads | |
| self.added_kv_proj_dim = added_kv_proj_dim | |
| self.only_cross_attention = only_cross_attention | |
| if self.added_kv_proj_dim is None and self.only_cross_attention: | |
| raise ValueError( | |
| "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | |
| ) | |
| self.group_norm = None | |
| self.spatial_norm = None | |
| self.norm_q = None | |
| self.norm_k = None | |
| self.norm_cross = None | |
| self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device) | |
| if not self.only_cross_attention: | |
| # only relevant for the `AddedKVProcessor` classes | |
| self.to_k = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device) | |
| self.to_v = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device) | |
| else: | |
| self.to_k = None | |
| self.to_v = None | |
| self.added_proj_bias = added_proj_bias | |
| if self.added_kv_proj_dim is not None: | |
| self.add_k_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device) | |
| self.add_v_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device) | |
| if self.context_pre_only is not None: | |
| self.add_q_proj = operations.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias, dtype=dtype, device=device) | |
| else: | |
| self.add_q_proj = None | |
| self.add_k_proj = None | |
| self.add_v_proj = None | |
| if not self.pre_only: | |
| self.to_out = nn.ModuleList([]) | |
| self.to_out.append(operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device)) | |
| self.to_out.append(nn.Dropout(dropout)) | |
| else: | |
| self.to_out = None | |
| if self.context_pre_only is not None and not self.context_pre_only: | |
| self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device) | |
| else: | |
| self.to_add_out = None | |
| self.norm_added_q = None | |
| self.norm_added_k = None | |
| self.processor = processor | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| **cross_attention_kwargs, | |
| ) -> torch.Tensor: | |
| return self.processor( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| class CustomLiteLAProcessor2_0: | |
| """Attention processor used typically in processing the SD3-like self-attention projections. add rms norm for query and key and apply RoPE""" | |
| def __init__(self): | |
| self.kernel_func = nn.ReLU(inplace=False) | |
| self.eps = 1e-15 | |
| self.pad_val = 1.0 | |
| def apply_rotary_emb( | |
| self, | |
| x: torch.Tensor, | |
| freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings | |
| to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are | |
| reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting | |
| tensors contain rotary embeddings and are returned as real tensors. | |
| Args: | |
| x (`torch.Tensor`): | |
| Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply | |
| freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
| """ | |
| cos, sin = freqs_cis # [S, D] | |
| cos = cos[None, None] | |
| sin = sin[None, None] | |
| cos, sin = cos.to(x.device), sin.to(x.device) | |
| x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] | |
| x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
| out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
| return out | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None, | |
| rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None, | |
| *args, | |
| **kwargs, | |
| ) -> torch.FloatTensor: | |
| hidden_states_len = hidden_states.shape[1] | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| if encoder_hidden_states is not None: | |
| context_input_ndim = encoder_hidden_states.ndim | |
| if context_input_ndim == 4: | |
| batch_size, channel, height, width = encoder_hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size = hidden_states.shape[0] | |
| # `sample` projections. | |
| dtype = hidden_states.dtype | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| # `context` projections. | |
| has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj") | |
| if encoder_hidden_states is not None and has_encoder_hidden_state_proj: | |
| encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
| # attention | |
| if not attn.is_cross_attention: | |
| query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) | |
| key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) | |
| value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) | |
| else: | |
| query = hidden_states | |
| key = encoder_hidden_states | |
| value = encoder_hidden_states | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1) | |
| key = key.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1).transpose(-1, -2) | |
| value = value.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1) | |
| # RoPE需要 [B, H, S, D] 输入 | |
| # 此时 query是 [B, H, D, S], 需要转成 [B, H, S, D] 才能应用RoPE | |
| query = query.permute(0, 1, 3, 2) # [B, H, S, D] (从 [B, H, D, S]) | |
| # Apply query and key normalization if needed | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # Apply RoPE if needed | |
| if rotary_freqs_cis is not None: | |
| query = self.apply_rotary_emb(query, rotary_freqs_cis) | |
| if not attn.is_cross_attention: | |
| key = self.apply_rotary_emb(key, rotary_freqs_cis) | |
| elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj: | |
| key = self.apply_rotary_emb(key, rotary_freqs_cis_cross) | |
| # 此时 query是 [B, H, S, D],需要还原成 [B, H, D, S] | |
| query = query.permute(0, 1, 3, 2) # [B, H, D, S] | |
| if attention_mask is not None: | |
| # attention_mask: [B, S] -> [B, 1, S, 1] | |
| attention_mask = attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S, 1] | |
| query = query * attention_mask.permute(0, 1, 3, 2) # [B, H, S, D] * [B, 1, S, 1] | |
| if not attn.is_cross_attention: | |
| key = key * attention_mask # key: [B, h, S, D] 与 mask [B, 1, S, 1] 相乘 | |
| value = value * attention_mask.permute(0, 1, 3, 2) # 如果 value 是 [B, h, D, S],那么需调整mask以匹配S维度 | |
| if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj: | |
| encoder_attention_mask = encoder_attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S_enc, 1] | |
| # 此时 key: [B, h, S_enc, D], value: [B, h, D, S_enc] | |
| key = key * encoder_attention_mask # [B, h, S_enc, D] * [B, 1, S_enc, 1] | |
| value = value * encoder_attention_mask.permute(0, 1, 3, 2) # [B, h, D, S_enc] * [B, 1, 1, S_enc] | |
| query = self.kernel_func(query) | |
| key = self.kernel_func(key) | |
| query, key, value = query.float(), key.float(), value.float() | |
| value = F.pad(value, (0, 0, 0, 1), mode="constant", value=self.pad_val) | |
| vk = torch.matmul(value, key) | |
| hidden_states = torch.matmul(vk, query) | |
| if hidden_states.dtype in [torch.float16, torch.bfloat16]: | |
| hidden_states = hidden_states.float() | |
| hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps) | |
| hidden_states = hidden_states.view(batch_size, attn.heads * head_dim, -1).permute(0, 2, 1) | |
| hidden_states = hidden_states.to(dtype) | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states = encoder_hidden_states.to(dtype) | |
| # Split the attention outputs. | |
| if encoder_hidden_states is not None and not attn.is_cross_attention and has_encoder_hidden_state_proj: | |
| hidden_states, encoder_hidden_states = ( | |
| hidden_states[:, : hidden_states_len], | |
| hidden_states[:, hidden_states_len:], | |
| ) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if encoder_hidden_states is not None and not attn.context_pre_only and not attn.is_cross_attention and hasattr(attn, "to_add_out"): | |
| encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if encoder_hidden_states is not None and context_input_ndim == 4: | |
| encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if torch.get_autocast_gpu_dtype() == torch.float16: | |
| hidden_states = hidden_states.clip(-65504, 65504) | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) | |
| return hidden_states, encoder_hidden_states | |
| class CustomerAttnProcessor2_0: | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
| """ | |
| def apply_rotary_emb( | |
| self, | |
| x: torch.Tensor, | |
| freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings | |
| to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are | |
| reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting | |
| tensors contain rotary embeddings and are returned as real tensors. | |
| Args: | |
| x (`torch.Tensor`): | |
| Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply | |
| freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
| """ | |
| cos, sin = freqs_cis # [S, D] | |
| cos = cos[None, None] | |
| sin = sin[None, None] | |
| cos, sin = cos.to(x.device), sin.to(x.device) | |
| x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] | |
| x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
| out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
| return out | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None, | |
| rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None, | |
| *args, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| residual = hidden_states | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj") | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # Apply RoPE if needed | |
| if rotary_freqs_cis is not None: | |
| query = self.apply_rotary_emb(query, rotary_freqs_cis) | |
| if not attn.is_cross_attention: | |
| key = self.apply_rotary_emb(key, rotary_freqs_cis) | |
| elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj: | |
| key = self.apply_rotary_emb(key, rotary_freqs_cis_cross) | |
| if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj: | |
| # attention_mask: N x S1 | |
| # encoder_attention_mask: N x S2 | |
| # cross attention 整合attention_mask和encoder_attention_mask | |
| combined_mask = attention_mask[:, :, None] * encoder_attention_mask[:, None, :] | |
| attention_mask = torch.where(combined_mask == 1, 0.0, -torch.inf) | |
| attention_mask = attention_mask[:, None, :, :].expand(-1, attn.heads, -1, -1).to(query.dtype) | |
| elif not attn.is_cross_attention and attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| hidden_states = optimized_attention( | |
| query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True, | |
| ).to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore | |
| """Repeat `val` for `repeat_time` times and return the list or val if list/tuple.""" | |
| if isinstance(x, (list, tuple)): | |
| return list(x) | |
| return [x for _ in range(repeat_time)] | |
| def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore | |
| """Return tuple with min_len by repeating element at idx_repeat.""" | |
| # convert to list first | |
| x = val2list(x) | |
| # repeat elements if necessary | |
| if len(x) > 0: | |
| x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] | |
| return tuple(x) | |
| def t2i_modulate(x, shift, scale): | |
| return x * (1 + scale) + shift | |
| def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]: | |
| if isinstance(kernel_size, tuple): | |
| return tuple([get_same_padding(ks) for ks in kernel_size]) | |
| else: | |
| assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number" | |
| return kernel_size // 2 | |
| class ConvLayer(nn.Module): | |
| def __init__( | |
| self, | |
| in_dim: int, | |
| out_dim: int, | |
| kernel_size=3, | |
| stride=1, | |
| dilation=1, | |
| groups=1, | |
| padding: Union[int, None] = None, | |
| use_bias=False, | |
| norm=None, | |
| act=None, | |
| dtype=None, device=None, operations=None | |
| ): | |
| super().__init__() | |
| if padding is None: | |
| padding = get_same_padding(kernel_size) | |
| padding *= dilation | |
| self.in_dim = in_dim | |
| self.out_dim = out_dim | |
| self.kernel_size = kernel_size | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.groups = groups | |
| self.padding = padding | |
| self.use_bias = use_bias | |
| self.conv = operations.Conv1d( | |
| in_dim, | |
| out_dim, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| groups=groups, | |
| bias=use_bias, | |
| device=device, | |
| dtype=dtype | |
| ) | |
| if norm is not None: | |
| self.norm = operations.RMSNorm(out_dim, elementwise_affine=False, dtype=dtype, device=device) | |
| else: | |
| self.norm = None | |
| if act is not None: | |
| self.act = nn.SiLU(inplace=True) | |
| else: | |
| self.act = None | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.conv(x) | |
| if self.norm: | |
| x = self.norm(x) | |
| if self.act: | |
| x = self.act(x) | |
| return x | |
| class GLUMBConv(nn.Module): | |
| def __init__( | |
| self, | |
| in_features: int, | |
| hidden_features: int, | |
| out_feature=None, | |
| kernel_size=3, | |
| stride=1, | |
| padding: Union[int, None] = None, | |
| use_bias=False, | |
| norm=(None, None, None), | |
| act=("silu", "silu", None), | |
| dilation=1, | |
| dtype=None, device=None, operations=None | |
| ): | |
| out_feature = out_feature or in_features | |
| super().__init__() | |
| use_bias = val2tuple(use_bias, 3) | |
| norm = val2tuple(norm, 3) | |
| act = val2tuple(act, 3) | |
| self.glu_act = nn.SiLU(inplace=False) | |
| self.inverted_conv = ConvLayer( | |
| in_features, | |
| hidden_features * 2, | |
| 1, | |
| use_bias=use_bias[0], | |
| norm=norm[0], | |
| act=act[0], | |
| dtype=dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| self.depth_conv = ConvLayer( | |
| hidden_features * 2, | |
| hidden_features * 2, | |
| kernel_size, | |
| stride=stride, | |
| groups=hidden_features * 2, | |
| padding=padding, | |
| use_bias=use_bias[1], | |
| norm=norm[1], | |
| act=None, | |
| dilation=dilation, | |
| dtype=dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| self.point_conv = ConvLayer( | |
| hidden_features, | |
| out_feature, | |
| 1, | |
| use_bias=use_bias[2], | |
| norm=norm[2], | |
| act=act[2], | |
| dtype=dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = x.transpose(1, 2) | |
| x = self.inverted_conv(x) | |
| x = self.depth_conv(x) | |
| x, gate = torch.chunk(x, 2, dim=1) | |
| gate = self.glu_act(gate) | |
| x = x * gate | |
| x = self.point_conv(x) | |
| x = x.transpose(1, 2) | |
| return x | |
| class LinearTransformerBlock(nn.Module): | |
| """ | |
| A Sana block with global shared adaptive layer norm (adaLN-single) conditioning. | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| use_adaln_single=True, | |
| cross_attention_dim=None, | |
| added_kv_proj_dim=None, | |
| context_pre_only=False, | |
| mlp_ratio=4.0, | |
| add_cross_attention=False, | |
| add_cross_attention_dim=None, | |
| qk_norm=None, | |
| dtype=None, device=None, operations=None | |
| ): | |
| super().__init__() | |
| self.norm1 = operations.RMSNorm(dim, elementwise_affine=False, eps=1e-6) | |
| self.attn = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| added_kv_proj_dim=added_kv_proj_dim, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| out_dim=dim, | |
| bias=True, | |
| qk_norm=qk_norm, | |
| processor=CustomLiteLAProcessor2_0(), | |
| dtype=dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| self.add_cross_attention = add_cross_attention | |
| self.context_pre_only = context_pre_only | |
| if add_cross_attention and add_cross_attention_dim is not None: | |
| self.cross_attn = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=add_cross_attention_dim, | |
| added_kv_proj_dim=add_cross_attention_dim, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| out_dim=dim, | |
| context_pre_only=context_pre_only, | |
| bias=True, | |
| qk_norm=qk_norm, | |
| processor=CustomerAttnProcessor2_0(), | |
| dtype=dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| self.norm2 = operations.RMSNorm(dim, 1e-06, elementwise_affine=False) | |
| self.ff = GLUMBConv( | |
| in_features=dim, | |
| hidden_features=int(dim * mlp_ratio), | |
| use_bias=(True, True, False), | |
| norm=(None, None, None), | |
| act=("silu", "silu", None), | |
| dtype=dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| self.use_adaln_single = use_adaln_single | |
| if use_adaln_single: | |
| self.scale_shift_table = nn.Parameter(torch.empty(6, dim, dtype=dtype, device=device)) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: torch.FloatTensor = None, | |
| encoder_attention_mask: torch.FloatTensor = None, | |
| rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None, | |
| rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None, | |
| temb: torch.FloatTensor = None, | |
| ): | |
| N = hidden_states.shape[0] | |
| # step 1: AdaLN single | |
| if self.use_adaln_single: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
| comfy.model_management.cast_to(self.scale_shift_table[None], dtype=temb.dtype, device=temb.device) + temb.reshape(N, 6, -1) | |
| ).chunk(6, dim=1) | |
| norm_hidden_states = self.norm1(hidden_states) | |
| if self.use_adaln_single: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
| # step 2: attention | |
| if not self.add_cross_attention: | |
| attn_output, encoder_hidden_states = self.attn( | |
| hidden_states=norm_hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| rotary_freqs_cis=rotary_freqs_cis, | |
| rotary_freqs_cis_cross=rotary_freqs_cis_cross, | |
| ) | |
| else: | |
| attn_output, _ = self.attn( | |
| hidden_states=norm_hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| rotary_freqs_cis=rotary_freqs_cis, | |
| rotary_freqs_cis_cross=None, | |
| ) | |
| if self.use_adaln_single: | |
| attn_output = gate_msa * attn_output | |
| hidden_states = attn_output + hidden_states | |
| if self.add_cross_attention: | |
| attn_output = self.cross_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| rotary_freqs_cis=rotary_freqs_cis, | |
| rotary_freqs_cis_cross=rotary_freqs_cis_cross, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # step 3: add norm | |
| norm_hidden_states = self.norm2(hidden_states) | |
| if self.use_adaln_single: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
| # step 4: feed forward | |
| ff_output = self.ff(norm_hidden_states) | |
| if self.use_adaln_single: | |
| ff_output = gate_mlp * ff_output | |
| hidden_states = hidden_states + ff_output | |
| return hidden_states | |