Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from torch import nn | |
| from comfy.ldm.flux.layers import ( | |
| DoubleStreamBlock, | |
| LastLayer, | |
| MLPEmbedder, | |
| SingleStreamBlock, | |
| timestep_embedding, | |
| ) | |
| class Hunyuan3Dv2(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels=64, | |
| context_in_dim=1536, | |
| hidden_size=1024, | |
| mlp_ratio=4.0, | |
| num_heads=16, | |
| depth=16, | |
| depth_single_blocks=32, | |
| qkv_bias=True, | |
| guidance_embed=False, | |
| image_model=None, | |
| dtype=None, | |
| device=None, | |
| operations=None | |
| ): | |
| super().__init__() | |
| self.dtype = dtype | |
| if hidden_size % num_heads != 0: | |
| raise ValueError( | |
| f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}" | |
| ) | |
| self.max_period = 1000 # While reimplementing the model I noticed that they messed up. This 1000 value was meant to be the time_factor but they set the max_period instead | |
| self.latent_in = operations.Linear(in_channels, hidden_size, bias=True, dtype=dtype, device=device) | |
| self.time_in = MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations) | |
| self.guidance_in = ( | |
| MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations) if guidance_embed else None | |
| ) | |
| self.cond_in = operations.Linear(context_in_dim, hidden_size, dtype=dtype, device=device) | |
| self.double_blocks = nn.ModuleList( | |
| [ | |
| DoubleStreamBlock( | |
| hidden_size, | |
| num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| dtype=dtype, device=device, operations=operations | |
| ) | |
| for _ in range(depth) | |
| ] | |
| ) | |
| self.single_blocks = nn.ModuleList( | |
| [ | |
| SingleStreamBlock( | |
| hidden_size, | |
| num_heads, | |
| mlp_ratio=mlp_ratio, | |
| dtype=dtype, device=device, operations=operations | |
| ) | |
| for _ in range(depth_single_blocks) | |
| ] | |
| ) | |
| self.final_layer = LastLayer(hidden_size, 1, in_channels, dtype=dtype, device=device, operations=operations) | |
| def forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs): | |
| x = x.movedim(-1, -2) | |
| timestep = 1.0 - timestep | |
| txt = context | |
| img = self.latent_in(x) | |
| vec = self.time_in(timestep_embedding(timestep, 256, self.max_period).to(dtype=img.dtype)) | |
| if self.guidance_in is not None: | |
| if guidance is not None: | |
| vec = vec + self.guidance_in(timestep_embedding(guidance, 256, self.max_period).to(img.dtype)) | |
| txt = self.cond_in(txt) | |
| pe = None | |
| attn_mask = None | |
| patches_replace = transformer_options.get("patches_replace", {}) | |
| blocks_replace = patches_replace.get("dit", {}) | |
| for i, block in enumerate(self.double_blocks): | |
| if ("double_block", i) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"], out["txt"] = block(img=args["img"], | |
| txt=args["txt"], | |
| vec=args["vec"], | |
| pe=args["pe"], | |
| attn_mask=args.get("attn_mask")) | |
| return out | |
| out = blocks_replace[("double_block", i)]({"img": img, | |
| "txt": txt, | |
| "vec": vec, | |
| "pe": pe, | |
| "attn_mask": attn_mask}, | |
| {"original_block": block_wrap}) | |
| txt = out["txt"] | |
| img = out["img"] | |
| else: | |
| img, txt = block(img=img, | |
| txt=txt, | |
| vec=vec, | |
| pe=pe, | |
| attn_mask=attn_mask) | |
| img = torch.cat((txt, img), 1) | |
| for i, block in enumerate(self.single_blocks): | |
| if ("single_block", i) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"] = block(args["img"], | |
| vec=args["vec"], | |
| pe=args["pe"], | |
| attn_mask=args.get("attn_mask")) | |
| return out | |
| out = blocks_replace[("single_block", i)]({"img": img, | |
| "vec": vec, | |
| "pe": pe, | |
| "attn_mask": attn_mask}, | |
| {"original_block": block_wrap}) | |
| img = out["img"] | |
| else: | |
| img = block(img, vec=vec, pe=pe, attn_mask=attn_mask) | |
| img = img[:, txt.shape[1]:, ...] | |
| img = self.final_layer(img, vec) | |
| return img.movedim(-2, -1) * (-1.0) | |