Spaces:
Running
on
Zero
Running
on
Zero
| # original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py | |
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| from einops import repeat | |
| from comfy.ldm.modules.attention import optimized_attention | |
| from comfy.ldm.flux.layers import EmbedND | |
| from comfy.ldm.flux.math import apply_rope | |
| import comfy.ldm.common_dit | |
| import comfy.model_management | |
| def sinusoidal_embedding_1d(dim, position): | |
| # preprocess | |
| assert dim % 2 == 0 | |
| half = dim // 2 | |
| position = position.type(torch.float32) | |
| # calculation | |
| sinusoid = torch.outer( | |
| position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
| x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
| return x | |
| class WanSelfAttention(nn.Module): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6, operation_settings={}): | |
| assert dim % num_heads == 0 | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.eps = eps | |
| # layers | |
| self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() | |
| self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() | |
| def forward(self, x, freqs): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
| # query, key, value function | |
| def qkv_fn(x): | |
| q = self.norm_q(self.q(x)).view(b, s, n, d) | |
| k = self.norm_k(self.k(x)).view(b, s, n, d) | |
| v = self.v(x).view(b, s, n * d) | |
| return q, k, v | |
| q, k, v = qkv_fn(x) | |
| q, k = apply_rope(q, k, freqs) | |
| x = optimized_attention( | |
| q.view(b, s, n * d), | |
| k.view(b, s, n * d), | |
| v, | |
| heads=self.num_heads, | |
| ) | |
| x = self.o(x) | |
| return x | |
| class WanT2VCrossAttention(WanSelfAttention): | |
| def forward(self, x, context, **kwargs): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| """ | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)) | |
| k = self.norm_k(self.k(context)) | |
| v = self.v(context) | |
| # compute attention | |
| x = optimized_attention(q, k, v, heads=self.num_heads) | |
| x = self.o(x) | |
| return x | |
| class WanI2VCrossAttention(WanSelfAttention): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6, operation_settings={}): | |
| super().__init__(dim, num_heads, window_size, qk_norm, eps, operation_settings=operation_settings) | |
| self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| # self.alpha = nn.Parameter(torch.zeros((1, ))) | |
| self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() | |
| def forward(self, x, context, context_img_len): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| """ | |
| context_img = context[:, :context_img_len] | |
| context = context[:, context_img_len:] | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)) | |
| k = self.norm_k(self.k(context)) | |
| v = self.v(context) | |
| k_img = self.norm_k_img(self.k_img(context_img)) | |
| v_img = self.v_img(context_img) | |
| img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads) | |
| # compute attention | |
| x = optimized_attention(q, k, v, heads=self.num_heads) | |
| # output | |
| x = x + img_x | |
| x = self.o(x) | |
| return x | |
| WAN_CROSSATTENTION_CLASSES = { | |
| 't2v_cross_attn': WanT2VCrossAttention, | |
| 'i2v_cross_attn': WanI2VCrossAttention, | |
| } | |
| class WanAttentionBlock(nn.Module): | |
| def __init__(self, | |
| cross_attn_type, | |
| dim, | |
| ffn_dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=False, | |
| eps=1e-6, operation_settings={}): | |
| super().__init__() | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # layers | |
| self.norm1 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, | |
| eps, operation_settings=operation_settings) | |
| self.norm3 = operation_settings.get("operations").LayerNorm( | |
| dim, eps, | |
| elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if cross_attn_norm else nn.Identity() | |
| self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, | |
| num_heads, | |
| (-1, -1), | |
| qk_norm, | |
| eps, operation_settings=operation_settings) | |
| self.norm2 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.ffn = nn.Sequential( | |
| operation_settings.get("operations").Linear(dim, ffn_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'), | |
| operation_settings.get("operations").Linear(ffn_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.empty(1, 6, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
| def forward( | |
| self, | |
| x, | |
| e, | |
| freqs, | |
| context, | |
| context_img_len=257, | |
| ): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| e(Tensor): Shape [B, 6, C] | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| # assert e.dtype == torch.float32 | |
| e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1) | |
| # assert e[0].dtype == torch.float32 | |
| # self-attention | |
| y = self.self_attn( | |
| self.norm1(x) * (1 + e[1]) + e[0], | |
| freqs) | |
| x = x + y * e[2] | |
| # cross-attention & ffn | |
| x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len) | |
| y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3]) | |
| x = x + y * e[5] | |
| return x | |
| class VaceWanAttentionBlock(WanAttentionBlock): | |
| def __init__( | |
| self, | |
| cross_attn_type, | |
| dim, | |
| ffn_dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=False, | |
| eps=1e-6, | |
| block_id=0, | |
| operation_settings={} | |
| ): | |
| super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings) | |
| self.block_id = block_id | |
| if block_id == 0: | |
| self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| def forward(self, c, x, **kwargs): | |
| if self.block_id == 0: | |
| c = self.before_proj(c) + x | |
| c = super().forward(c, **kwargs) | |
| c_skip = self.after_proj(c) | |
| return c_skip, c | |
| class WanCamAdapter(nn.Module): | |
| def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1, operation_settings={}): | |
| super(WanCamAdapter, self).__init__() | |
| # Pixel Unshuffle: reduce spatial dimensions by a factor of 8 | |
| self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8) | |
| # Convolution: reduce spatial dimensions by a factor | |
| # of 2 (without overlap) | |
| self.conv = operation_settings.get("operations").Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| # Residual blocks for feature extraction | |
| self.residual_blocks = nn.Sequential( | |
| *[WanCamResidualBlock(out_dim, operation_settings = operation_settings) for _ in range(num_residual_blocks)] | |
| ) | |
| def forward(self, x): | |
| # Reshape to merge the frame dimension into batch | |
| bs, c, f, h, w = x.size() | |
| x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w) | |
| # Pixel Unshuffle operation | |
| x_unshuffled = self.pixel_unshuffle(x) | |
| # Convolution operation | |
| x_conv = self.conv(x_unshuffled) | |
| # Feature extraction with residual blocks | |
| out = self.residual_blocks(x_conv) | |
| # Reshape to restore original bf dimension | |
| out = out.view(bs, f, out.size(1), out.size(2), out.size(3)) | |
| # Permute dimensions to reorder (if needed), e.g., swap channels and feature frames | |
| out = out.permute(0, 2, 1, 3, 4) | |
| return out | |
| class WanCamResidualBlock(nn.Module): | |
| def __init__(self, dim, operation_settings={}): | |
| super(WanCamResidualBlock, self).__init__() | |
| self.conv1 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv2 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| def forward(self, x): | |
| residual = x | |
| out = self.relu(self.conv1(x)) | |
| out = self.conv2(out) | |
| out += residual | |
| return out | |
| class Head(nn.Module): | |
| def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}): | |
| super().__init__() | |
| self.dim = dim | |
| self.out_dim = out_dim | |
| self.patch_size = patch_size | |
| self.eps = eps | |
| # layers | |
| out_dim = math.prod(patch_size) * out_dim | |
| self.norm = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| self.head = operation_settings.get("operations").Linear(dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.empty(1, 2, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
| def forward(self, x, e): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| e(Tensor): Shape [B, C] | |
| """ | |
| # assert e.dtype == torch.float32 | |
| e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1) | |
| x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) | |
| return x | |
| class MLPProj(torch.nn.Module): | |
| def __init__(self, in_dim, out_dim, flf_pos_embed_token_number=None, operation_settings={}): | |
| super().__init__() | |
| self.proj = torch.nn.Sequential( | |
| operation_settings.get("operations").LayerNorm(in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear(in_dim, in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), | |
| torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), | |
| operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
| if flf_pos_embed_token_number is not None: | |
| self.emb_pos = nn.Parameter(torch.empty((1, flf_pos_embed_token_number, in_dim), device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
| else: | |
| self.emb_pos = None | |
| def forward(self, image_embeds): | |
| if self.emb_pos is not None: | |
| image_embeds = image_embeds[:, :self.emb_pos.shape[1]] + comfy.model_management.cast_to(self.emb_pos[:, :image_embeds.shape[1]], dtype=image_embeds.dtype, device=image_embeds.device) | |
| clip_extra_context_tokens = self.proj(image_embeds) | |
| return clip_extra_context_tokens | |
| class WanModel(torch.nn.Module): | |
| r""" | |
| Wan diffusion backbone supporting both text-to-video and image-to-video. | |
| """ | |
| def __init__(self, | |
| model_type='t2v', | |
| patch_size=(1, 2, 2), | |
| text_len=512, | |
| in_dim=16, | |
| dim=2048, | |
| ffn_dim=8192, | |
| freq_dim=256, | |
| text_dim=4096, | |
| out_dim=16, | |
| num_heads=16, | |
| num_layers=32, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6, | |
| flf_pos_embed_token_number=None, | |
| image_model=None, | |
| device=None, | |
| dtype=None, | |
| operations=None, | |
| ): | |
| r""" | |
| Initialize the diffusion model backbone. | |
| Args: | |
| model_type (`str`, *optional*, defaults to 't2v'): | |
| Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
| patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
| 3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
| text_len (`int`, *optional*, defaults to 512): | |
| Fixed length for text embeddings | |
| in_dim (`int`, *optional*, defaults to 16): | |
| Input video channels (C_in) | |
| dim (`int`, *optional*, defaults to 2048): | |
| Hidden dimension of the transformer | |
| ffn_dim (`int`, *optional*, defaults to 8192): | |
| Intermediate dimension in feed-forward network | |
| freq_dim (`int`, *optional*, defaults to 256): | |
| Dimension for sinusoidal time embeddings | |
| text_dim (`int`, *optional*, defaults to 4096): | |
| Input dimension for text embeddings | |
| out_dim (`int`, *optional*, defaults to 16): | |
| Output video channels (C_out) | |
| num_heads (`int`, *optional*, defaults to 16): | |
| Number of attention heads | |
| num_layers (`int`, *optional*, defaults to 32): | |
| Number of transformer blocks | |
| window_size (`tuple`, *optional*, defaults to (-1, -1)): | |
| Window size for local attention (-1 indicates global attention) | |
| qk_norm (`bool`, *optional*, defaults to True): | |
| Enable query/key normalization | |
| cross_attn_norm (`bool`, *optional*, defaults to False): | |
| Enable cross-attention normalization | |
| eps (`float`, *optional*, defaults to 1e-6): | |
| Epsilon value for normalization layers | |
| """ | |
| super().__init__() | |
| self.dtype = dtype | |
| operation_settings = {"operations": operations, "device": device, "dtype": dtype} | |
| assert model_type in ['t2v', 'i2v'] | |
| self.model_type = model_type | |
| self.patch_size = patch_size | |
| self.text_len = text_len | |
| self.in_dim = in_dim | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.freq_dim = freq_dim | |
| self.text_dim = text_dim | |
| self.out_dim = out_dim | |
| self.num_heads = num_heads | |
| self.num_layers = num_layers | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # embeddings | |
| self.patch_embedding = operations.Conv3d( | |
| in_dim, dim, kernel_size=patch_size, stride=patch_size, device=operation_settings.get("device"), dtype=torch.float32) | |
| self.text_embedding = nn.Sequential( | |
| operations.Linear(text_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'), | |
| operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
| self.time_embedding = nn.Sequential( | |
| operations.Linear(freq_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.SiLU(), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
| self.time_projection = nn.Sequential(nn.SiLU(), operations.Linear(dim, dim * 6, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
| # blocks | |
| cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' | |
| self.blocks = nn.ModuleList([ | |
| WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
| window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings) | |
| for _ in range(num_layers) | |
| ]) | |
| # head | |
| self.head = Head(dim, out_dim, patch_size, eps, operation_settings=operation_settings) | |
| d = dim // num_heads | |
| self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)]) | |
| if model_type == 'i2v': | |
| self.img_emb = MLPProj(1280, dim, flf_pos_embed_token_number=flf_pos_embed_token_number, operation_settings=operation_settings) | |
| else: | |
| self.img_emb = None | |
| def forward_orig( | |
| self, | |
| x, | |
| t, | |
| context, | |
| clip_fea=None, | |
| freqs=None, | |
| transformer_options={}, | |
| **kwargs, | |
| ): | |
| r""" | |
| Forward pass through the diffusion model | |
| Args: | |
| x (Tensor): | |
| List of input video tensors with shape [B, C_in, F, H, W] | |
| t (Tensor): | |
| Diffusion timesteps tensor of shape [B] | |
| context (List[Tensor]): | |
| List of text embeddings each with shape [B, L, C] | |
| seq_len (`int`): | |
| Maximum sequence length for positional encoding | |
| clip_fea (Tensor, *optional*): | |
| CLIP image features for image-to-video mode | |
| y (List[Tensor], *optional*): | |
| Conditional video inputs for image-to-video mode, same shape as x | |
| Returns: | |
| List[Tensor]: | |
| List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
| """ | |
| # embeddings | |
| x = self.patch_embedding(x.float()).to(x.dtype) | |
| grid_sizes = x.shape[2:] | |
| x = x.flatten(2).transpose(1, 2) | |
| # time embeddings | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype)) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| # context | |
| context = self.text_embedding(context) | |
| context_img_len = None | |
| if clip_fea is not None: | |
| if self.img_emb is not None: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| context_img_len = clip_fea.shape[-2] | |
| patches_replace = transformer_options.get("patches_replace", {}) | |
| blocks_replace = patches_replace.get("dit", {}) | |
| for i, block in enumerate(self.blocks): | |
| if ("double_block", i) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len) | |
| return out | |
| out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) | |
| x = out["img"] | |
| else: | |
| x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) | |
| # head | |
| x = self.head(x, e) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| return x | |
| def forward(self, x, timestep, context, clip_fea=None, transformer_options={}, **kwargs): | |
| bs, c, t, h, w = x.shape | |
| x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) | |
| patch_size = self.patch_size | |
| t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) | |
| h_len = ((h + (patch_size[1] // 2)) // patch_size[1]) | |
| w_len = ((w + (patch_size[2] // 2)) // patch_size[2]) | |
| img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype) | |
| img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1) | |
| img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1) | |
| img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1) | |
| img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs) | |
| freqs = self.rope_embedder(img_ids).movedim(1, 2) | |
| return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w] | |
| def unpatchify(self, x, grid_sizes): | |
| r""" | |
| Reconstruct video tensors from patch embeddings. | |
| Args: | |
| x (List[Tensor]): | |
| List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
| grid_sizes (Tensor): | |
| Original spatial-temporal grid dimensions before patching, | |
| shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
| Returns: | |
| List[Tensor]: | |
| Reconstructed video tensors with shape [L, C_out, F, H / 8, W / 8] | |
| """ | |
| c = self.out_dim | |
| u = x | |
| b = u.shape[0] | |
| u = u[:, :math.prod(grid_sizes)].view(b, *grid_sizes, *self.patch_size, c) | |
| u = torch.einsum('bfhwpqrc->bcfphqwr', u) | |
| u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)]) | |
| return u | |
| class VaceWanModel(WanModel): | |
| r""" | |
| Wan diffusion backbone supporting both text-to-video and image-to-video. | |
| """ | |
| def __init__(self, | |
| model_type='vace', | |
| patch_size=(1, 2, 2), | |
| text_len=512, | |
| in_dim=16, | |
| dim=2048, | |
| ffn_dim=8192, | |
| freq_dim=256, | |
| text_dim=4096, | |
| out_dim=16, | |
| num_heads=16, | |
| num_layers=32, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6, | |
| flf_pos_embed_token_number=None, | |
| image_model=None, | |
| vace_layers=None, | |
| vace_in_dim=None, | |
| device=None, | |
| dtype=None, | |
| operations=None, | |
| ): | |
| super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations) | |
| operation_settings = {"operations": operations, "device": device, "dtype": dtype} | |
| # Vace | |
| if vace_layers is not None: | |
| self.vace_layers = vace_layers | |
| self.vace_in_dim = vace_in_dim | |
| # vace blocks | |
| self.vace_blocks = nn.ModuleList([ | |
| VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, self.cross_attn_norm, self.eps, block_id=i, operation_settings=operation_settings) | |
| for i in range(self.vace_layers) | |
| ]) | |
| self.vace_layers_mapping = {i: n for n, i in enumerate(range(0, self.num_layers, self.num_layers // self.vace_layers))} | |
| # vace patch embeddings | |
| self.vace_patch_embedding = operations.Conv3d( | |
| self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size, device=device, dtype=torch.float32 | |
| ) | |
| def forward_orig( | |
| self, | |
| x, | |
| t, | |
| context, | |
| vace_context, | |
| vace_strength, | |
| clip_fea=None, | |
| freqs=None, | |
| transformer_options={}, | |
| **kwargs, | |
| ): | |
| # embeddings | |
| x = self.patch_embedding(x.float()).to(x.dtype) | |
| grid_sizes = x.shape[2:] | |
| x = x.flatten(2).transpose(1, 2) | |
| # time embeddings | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype)) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| # context | |
| context = self.text_embedding(context) | |
| context_img_len = None | |
| if clip_fea is not None: | |
| if self.img_emb is not None: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| context_img_len = clip_fea.shape[-2] | |
| orig_shape = list(vace_context.shape) | |
| vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:]) | |
| c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype) | |
| c = c.flatten(2).transpose(1, 2) | |
| c = list(c.split(orig_shape[0], dim=0)) | |
| # arguments | |
| x_orig = x | |
| patches_replace = transformer_options.get("patches_replace", {}) | |
| blocks_replace = patches_replace.get("dit", {}) | |
| for i, block in enumerate(self.blocks): | |
| if ("double_block", i) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len) | |
| return out | |
| out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) | |
| x = out["img"] | |
| else: | |
| x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) | |
| ii = self.vace_layers_mapping.get(i, None) | |
| if ii is not None: | |
| for iii in range(len(c)): | |
| c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) | |
| x += c_skip * vace_strength[iii] | |
| del c_skip | |
| # head | |
| x = self.head(x, e) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| return x | |
| class CameraWanModel(WanModel): | |
| r""" | |
| Wan diffusion backbone supporting both text-to-video and image-to-video. | |
| """ | |
| def __init__(self, | |
| model_type='camera', | |
| patch_size=(1, 2, 2), | |
| text_len=512, | |
| in_dim=16, | |
| dim=2048, | |
| ffn_dim=8192, | |
| freq_dim=256, | |
| text_dim=4096, | |
| out_dim=16, | |
| num_heads=16, | |
| num_layers=32, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6, | |
| flf_pos_embed_token_number=None, | |
| image_model=None, | |
| in_dim_control_adapter=24, | |
| device=None, | |
| dtype=None, | |
| operations=None, | |
| ): | |
| super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations) | |
| operation_settings = {"operations": operations, "device": device, "dtype": dtype} | |
| self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings) | |
| def forward_orig( | |
| self, | |
| x, | |
| t, | |
| context, | |
| clip_fea=None, | |
| freqs=None, | |
| camera_conditions = None, | |
| transformer_options={}, | |
| **kwargs, | |
| ): | |
| # embeddings | |
| x = self.patch_embedding(x.float()).to(x.dtype) | |
| if self.control_adapter is not None and camera_conditions is not None: | |
| x_camera = self.control_adapter(camera_conditions).to(x.dtype) | |
| x = x + x_camera | |
| grid_sizes = x.shape[2:] | |
| x = x.flatten(2).transpose(1, 2) | |
| # time embeddings | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype)) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| # context | |
| context = self.text_embedding(context) | |
| context_img_len = None | |
| if clip_fea is not None: | |
| if self.img_emb is not None: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| context_img_len = clip_fea.shape[-2] | |
| patches_replace = transformer_options.get("patches_replace", {}) | |
| blocks_replace = patches_replace.get("dit", {}) | |
| for i, block in enumerate(self.blocks): | |
| if ("double_block", i) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len) | |
| return out | |
| out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) | |
| x = out["img"] | |
| else: | |
| x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) | |
| # head | |
| x = self.head(x, e) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| return x | |