Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| # https://github.com/WeichenFan/CFG-Zero-star | |
| def optimized_scale(positive, negative): | |
| positive_flat = positive.reshape(positive.shape[0], -1) | |
| negative_flat = negative.reshape(negative.shape[0], -1) | |
| # Calculate dot production | |
| dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) | |
| # Squared norm of uncondition | |
| squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 | |
| # st_star = v_cond^T * v_uncond / ||v_uncond||^2 | |
| st_star = dot_product / squared_norm | |
| return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1)) | |
| class CFGZeroStar: | |
| def INPUT_TYPES(s): | |
| return {"required": {"model": ("MODEL",), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| RETURN_NAMES = ("patched_model",) | |
| FUNCTION = "patch" | |
| CATEGORY = "advanced/guidance" | |
| def patch(self, model): | |
| m = model.clone() | |
| def cfg_zero_star(args): | |
| guidance_scale = args['cond_scale'] | |
| x = args['input'] | |
| cond_p = args['cond_denoised'] | |
| uncond_p = args['uncond_denoised'] | |
| out = args["denoised"] | |
| alpha = optimized_scale(x - cond_p, x - uncond_p) | |
| return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha) | |
| m.set_model_sampler_post_cfg_function(cfg_zero_star) | |
| return (m, ) | |
| NODE_CLASS_MAPPINGS = { | |
| "CFGZeroStar": CFGZeroStar | |
| } | |