Spaces:
Runtime error
Runtime error
| import os | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| from PIL import Image | |
| from pytorch_lightning.callbacks import Callback | |
| import pytorch_lightning as pl | |
| from pytorch_lightning.utilities.distributed import rank_zero_only | |
| from omegaconf import OmegaConf | |
| # class ImageLogger(Callback): | |
| # def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True, | |
| # rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False, | |
| # log_images_kwargs=None): | |
| # super().__init__() | |
| # self.rescale = rescale | |
| # self.batch_freq = batch_frequency | |
| # self.max_images = max_images | |
| # if not increase_log_steps: | |
| # self.log_steps = [self.batch_freq] | |
| # self.clamp = clamp | |
| # self.disabled = disabled | |
| # self.log_on_batch_idx = log_on_batch_idx | |
| # self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} | |
| # self.log_first_step = log_first_step | |
| # @rank_zero_only | |
| # def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx): | |
| # root = os.path.join(save_dir, "image_log", split) | |
| # for k in images: | |
| # grid = torchvision.utils.make_grid(images[k], nrow=4) | |
| # if self.rescale: | |
| # grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
| # grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
| # grid = grid.numpy() | |
| # grid = (grid * 255).astype(np.uint8) | |
| # filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) | |
| # path = os.path.join(root, filename) | |
| # os.makedirs(os.path.split(path)[0], exist_ok=True) | |
| # Image.fromarray(grid).save(path) | |
| # def log_img(self, pl_module, batch, batch_idx, split="train"): | |
| # check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step | |
| # if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0 | |
| # hasattr(pl_module, "log_images") and | |
| # callable(pl_module.log_images) and | |
| # self.max_images > 0): | |
| # logger = type(pl_module.logger) | |
| # is_train = pl_module.training | |
| # if is_train: | |
| # pl_module.eval() | |
| # with torch.no_grad(): | |
| # images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) | |
| # for k in images: | |
| # N = min(images[k].shape[0], self.max_images) | |
| # images[k] = images[k][:N] | |
| # if isinstance(images[k], torch.Tensor): | |
| # images[k] = images[k].detach().cpu() | |
| # if self.clamp: | |
| # images[k] = torch.clamp(images[k], -1., 1.) | |
| # self.log_local(pl_module.logger.save_dir, split, images, | |
| # pl_module.global_step, pl_module.current_epoch, batch_idx) | |
| # if is_train: | |
| # pl_module.train() | |
| # def check_frequency(self, check_idx): | |
| # return check_idx % self.batch_freq == 0 | |
| # def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
| # if not self.disabled: | |
| # self.log_img(pl_module, batch, batch_idx, split="train") | |
| class SetupCallback(Callback): | |
| def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config): | |
| super().__init__() | |
| self.resume = resume | |
| self.now = now | |
| self.logdir = logdir | |
| self.ckptdir = ckptdir | |
| self.cfgdir = cfgdir | |
| self.config = config | |
| self.lightning_config = lightning_config | |
| def on_keyboard_interrupt(self, trainer, pl_module): | |
| if trainer.global_rank == 0: | |
| print("Summoning checkpoint.") | |
| ckpt_path = os.path.join(self.ckptdir, "last.ckpt") | |
| trainer.save_checkpoint(ckpt_path) | |
| def on_pretrain_routine_start(self, trainer, pl_module): | |
| if trainer.global_rank == 0: | |
| # Create logdirs and save configs | |
| os.makedirs(self.logdir, exist_ok=True) | |
| os.makedirs(self.ckptdir, exist_ok=True) | |
| os.makedirs(self.cfgdir, exist_ok=True) | |
| if "callbacks" in self.lightning_config: | |
| if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']: | |
| os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True) | |
| print("Project config") | |
| print(OmegaConf.to_yaml(self.config)) | |
| OmegaConf.save(self.config, | |
| os.path.join(self.cfgdir, "{}-project.yaml".format(self.now))) | |
| print("Lightning config") | |
| print(OmegaConf.to_yaml(self.lightning_config)) | |
| OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}), | |
| os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now))) | |
| # else: | |
| # # ModelCheckpoint callback created log directory --- remove it | |
| # if not self.resume and os.path.exists(self.logdir): | |
| # dst, name = os.path.split(self.logdir) | |
| # dst = os.path.join(dst, "child_runs", name) | |
| # os.makedirs(os.path.split(dst)[0], exist_ok=True) | |
| # try: | |
| # os.rename(self.logdir, dst) | |
| # except FileNotFoundError: | |
| # pass | |
| class ImageLogger(Callback): | |
| def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True, | |
| rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False, | |
| log_images_kwargs=None): | |
| super().__init__() | |
| self.rescale = rescale | |
| self.batch_freq = batch_frequency | |
| self.max_images = max_images | |
| self.logger_log_images = { | |
| pl.loggers.TestTubeLogger: self._testtube, | |
| } | |
| self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)] | |
| if not increase_log_steps: | |
| self.log_steps = [self.batch_freq] | |
| self.clamp = clamp | |
| self.disabled = disabled | |
| self.log_on_batch_idx = log_on_batch_idx | |
| self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} | |
| self.log_first_step = log_first_step | |
| def _testtube(self, pl_module, images, batch_idx, split): | |
| for k in images: | |
| grid = torchvision.utils.make_grid(images[k]) | |
| grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
| tag = f"{split}/{k}" | |
| pl_module.logger.experiment.add_image( | |
| tag, grid, | |
| global_step=pl_module.global_step) | |
| def log_local(self, save_dir, split, images, | |
| global_step, current_epoch, batch_idx): | |
| root = os.path.join(save_dir, "images", split) | |
| for k in images: | |
| grid = torchvision.utils.make_grid(images[k], nrow=4) | |
| if self.rescale: | |
| grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
| grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
| grid = grid.numpy() | |
| grid = (grid * 255).astype(np.uint8) | |
| filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format( | |
| k, | |
| global_step, | |
| current_epoch, | |
| batch_idx) | |
| path = os.path.join(root, filename) | |
| os.makedirs(os.path.split(path)[0], exist_ok=True) | |
| Image.fromarray(grid).save(path) | |
| def log_img(self, pl_module, batch, batch_idx, split="train"): | |
| check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step | |
| if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0 | |
| hasattr(pl_module, "log_images") and | |
| callable(pl_module.log_images) and | |
| self.max_images > 0): | |
| logger = type(pl_module.logger) | |
| is_train = pl_module.training | |
| if is_train: | |
| pl_module.eval() | |
| with torch.no_grad(): | |
| images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) | |
| for k in images: | |
| N = min(images[k].shape[0], self.max_images) | |
| images[k] = images[k][:N] | |
| if isinstance(images[k], torch.Tensor): | |
| images[k] = images[k].detach().cpu() | |
| if self.clamp: | |
| images[k] = torch.clamp(images[k], -1., 1.) | |
| self.log_local(pl_module.logger.save_dir, split, images, | |
| pl_module.global_step, pl_module.current_epoch, batch_idx) | |
| logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None) | |
| logger_log_images(pl_module, images, pl_module.global_step, split) | |
| if is_train: | |
| pl_module.train() | |
| def check_frequency(self, check_idx): | |
| if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and ( | |
| check_idx > 0 or self.log_first_step): | |
| try: | |
| self.log_steps.pop(0) | |
| except IndexError as e: | |
| print(e) | |
| pass | |
| return True | |
| return False | |
| def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
| if not self.disabled and (pl_module.global_step > 0 or self.log_first_step): | |
| self.log_img(pl_module, batch, batch_idx, split="train") | |
| def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
| # if not self.disabled and pl_module.global_step > 0: | |
| # self.log_img(pl_module, batch, batch_idx, split="val") | |
| # if hasattr(pl_module, 'calibrate_grad_norm'): | |
| # if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0: | |
| # self.log_gradients(trainer, pl_module, batch_idx=batch_idx) | |
| pass |