Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer | |
| from string import punctuation | |
| import re | |
| from parler_tts import ParlerTTSForConditionalGeneration | |
| from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| repo_id = "PHBJT/french_parler_tts_mini_v0.1" | |
| model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device) | |
| tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
| feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
| SAMPLE_RATE = feature_extractor.sampling_rate | |
| SEED = 42 | |
| default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres." | |
| default_description = "The voice speaks slowly with a very noisy background, carrying a low-pitch tone and displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue." | |
| examples = [ | |
| [ | |
| "La voix humaine est un instrument de musique au-dessus de tous les autres.", | |
| "The voice speaks slowly with a very noisy background, carrying a low-pitch tone and displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue.", | |
| None, | |
| ], | |
| [ | |
| "Tout ce qu'un homme est capable d'imaginer, d'autres hommes seront capables de le réaliser.", | |
| "A slightly expressive and animated speech with a moderate speed. The recording features a low-pitch voice and slight background noise, creating a close-sounding audio experience.", | |
| None, | |
| ], | |
| [ | |
| "La machine elle-même, si perfectionnée qu'on la suppose, n'est qu'un outil.", | |
| "A monotone yet slightly fast delivery, with a very close recording that almost has no background noise.", | |
| None, | |
| ], | |
| [ | |
| "Le progrès fait naître plus de besoins qu'il n'en satisfait.", | |
| "In a very poor recording quality, the voice delivers slightly expressive and animated words with a fast pace. There's a high level of background noise and a very distant-sounding reverberation. The voice is slightly higher pitched than average.", | |
| None, | |
| ], | |
| ] | |
| number_normalizer = EnglishNumberNormalizer() | |
| def preprocess(text): | |
| text = number_normalizer(text).strip() | |
| text = text.replace("-", " ") | |
| if text[-1] not in punctuation: | |
| text = f"{text}." | |
| abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b' | |
| def separate_abb(chunk): | |
| chunk = chunk.replace(".","") | |
| print(chunk) | |
| return " ".join(chunk) | |
| abbreviations = re.findall(abbreviations_pattern, text) | |
| for abv in abbreviations: | |
| if abv in text: | |
| text = text.replace(abv, separate_abb(abv)) | |
| return text | |
| def gen_tts(text, description): | |
| inputs = tokenizer(description.strip(), return_tensors="pt").to(device) | |
| prompt = tokenizer(preprocess(text), return_tensors="pt").to(device) | |
| set_seed(SEED) | |
| generation = model.generate( | |
| input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask, prompt_attention_mask=prompt.attention_mask, do_sample=True, temperature=1.0 | |
| ) | |
| audio_arr = generation.cpu().numpy().squeeze() | |
| return SAMPLE_RATE, audio_arr | |
| css = """ | |
| #share-btn-container { | |
| display: flex; | |
| padding-left: 0.5rem !important; | |
| padding-right: 0.5rem !important; | |
| background-color: #000000; | |
| justify-content: center; | |
| align-items: center; | |
| border-radius: 9999px !important; | |
| width: 13rem; | |
| margin-top: 10px; | |
| margin-left: auto; | |
| flex: unset !important; | |
| } | |
| #share-btn { | |
| all: initial; | |
| color: #ffffff; | |
| font-weight: 600; | |
| cursor: pointer; | |
| font-family: 'IBM Plex Sans', sans-serif; | |
| margin-left: 0.5rem !important; | |
| padding-top: 0.25rem !important; | |
| padding-bottom: 0.25rem !important; | |
| right:0; | |
| } | |
| #share-btn * { | |
| all: unset !important; | |
| } | |
| #share-btn-container div:nth-child(-n+2){ | |
| width: auto !important; | |
| min-height: 0px !important; | |
| } | |
| #share-btn-container .wrap { | |
| display: none !important; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as block: | |
| gr.HTML( | |
| """ | |
| <div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
| <div | |
| style=" | |
| display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; | |
| " | |
| > | |
| <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
| French Parler-TTS 🗣️ | |
| </h1> | |
| </div> | |
| </div> | |
| """ | |
| ) | |
| gr.HTML( | |
| f""" | |
| <p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for | |
| high-fidelity text-to-speech (TTS) models.</p> | |
| <p>The model demonstrated here, French Parler-TTS <a href="https://huggingface.co/PHBJT/french_parler_tts_mini_v0.1">Mini v0.1 French</a>, | |
| has been fine-tuned on a French dataset. It generates high-quality male speech | |
| with features that can be controlled using a simple text prompt (e.g. background noise, speaking rate, pitch and reverberation). Please note that this model currently supports only male voices (due to limitations on the dataset).</p> | |
| <p>By default, Parler-TTS generates 🎲 random male voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text") | |
| description = gr.Textbox(label="Description", lines=2, value=default_description, elem_id="input_description") | |
| run_button = gr.Button("Generate Audio", variant="primary") | |
| with gr.Column(): | |
| audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out") | |
| inputs = [input_text, description] | |
| outputs = [audio_out] | |
| run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True) | |
| gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True) | |
| gr.HTML( | |
| """ | |
| <p>Tips for ensuring good generation: | |
| <ul> | |
| <li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li> | |
| <li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li> | |
| <li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li> | |
| </ul> | |
| </p> | |
| <p>If you want to find out more about how this model was trained and even fine tune Parler TTS in any language, check-out <a href=">this</a> post | |
| """ | |
| ) | |
| block.queue() | |
| block.launch(share=True) |