Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,8 +11,8 @@ from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
|
| 11 |
# Device setup
|
| 12 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 13 |
|
| 14 |
-
# SmolLM setup
|
| 15 |
-
checkpoint = "HuggingFaceTB/SmolLM-360M"
|
| 16 |
smol_tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 17 |
smol_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
|
| 18 |
|
|
@@ -49,7 +49,9 @@ def format_description(raw_description, do_format=True):
|
|
| 49 |
if not do_format:
|
| 50 |
return raw_description
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
"a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery style]"
|
| 54 |
Where:
|
| 55 |
- gender: man/woman
|
|
@@ -57,21 +59,25 @@ Where:
|
|
| 57 |
- speed: slowly/moderately/quickly
|
| 58 |
- environment: close-sounding and clear/distant-sounding and noisy
|
| 59 |
- delivery style: with monotone delivery/with animated delivery
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
Formatted description:"""
|
| 63 |
|
| 64 |
-
|
|
|
|
| 65 |
outputs = smol_model.generate(
|
| 66 |
inputs,
|
| 67 |
-
|
| 68 |
-
num_return_sequences=1,
|
| 69 |
temperature=0.7,
|
| 70 |
-
|
| 71 |
-
|
| 72 |
)
|
| 73 |
formatted = smol_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
def preprocess(text):
|
| 77 |
text = number_normalizer(text).strip()
|
|
@@ -109,6 +115,7 @@ def gen_tts(text, description, do_format=True):
|
|
| 109 |
audio_arr = generation.cpu().numpy().squeeze()
|
| 110 |
return formatted_desc, (SAMPLE_RATE, audio_arr)
|
| 111 |
|
|
|
|
| 112 |
css = """
|
| 113 |
#share-btn-container {
|
| 114 |
display: flex;
|
|
|
|
| 11 |
# Device setup
|
| 12 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 13 |
|
| 14 |
+
# SmolLM Instruct setup
|
| 15 |
+
checkpoint = "HuggingFaceTB/SmolLM-360M-Instruct"
|
| 16 |
smol_tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 17 |
smol_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
|
| 18 |
|
|
|
|
| 49 |
if not do_format:
|
| 50 |
return raw_description
|
| 51 |
|
| 52 |
+
messages = [{
|
| 53 |
+
"role": "user",
|
| 54 |
+
"content": f"""Format this voice description to match exactly:
|
| 55 |
"a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery style]"
|
| 56 |
Where:
|
| 57 |
- gender: man/woman
|
|
|
|
| 59 |
- speed: slowly/moderately/quickly
|
| 60 |
- environment: close-sounding and clear/distant-sounding and noisy
|
| 61 |
- delivery style: with monotone delivery/with animated delivery
|
| 62 |
+
Description to format: {raw_description}"""
|
| 63 |
+
}]
|
|
|
|
| 64 |
|
| 65 |
+
input_text = smol_tokenizer.apply_chat_template(messages, tokenize=False)
|
| 66 |
+
inputs = smol_tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 67 |
outputs = smol_model.generate(
|
| 68 |
inputs,
|
| 69 |
+
max_new_tokens=200,
|
|
|
|
| 70 |
temperature=0.7,
|
| 71 |
+
top_p=0.9,
|
| 72 |
+
do_sample=True
|
| 73 |
)
|
| 74 |
formatted = smol_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 75 |
+
|
| 76 |
+
# Extract the formatted description from the response
|
| 77 |
+
try:
|
| 78 |
+
return formatted.split("a ")[-1].strip()
|
| 79 |
+
except:
|
| 80 |
+
return raw_description
|
| 81 |
|
| 82 |
def preprocess(text):
|
| 83 |
text = number_normalizer(text).strip()
|
|
|
|
| 115 |
audio_arr = generation.cpu().numpy().squeeze()
|
| 116 |
return formatted_desc, (SAMPLE_RATE, audio_arr)
|
| 117 |
|
| 118 |
+
# Rest of the code remains unchanged
|
| 119 |
css = """
|
| 120 |
#share-btn-container {
|
| 121 |
display: flex;
|