Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Update app.py (#1)
Browse files- Update app.py (5f88d6268c19f12a65d313cbf5504972a7267ded)
Co-authored-by: Yoach Lacombe <ylacombe@users.noreply.huggingface.co>
    	
        app.py
    CHANGED
    
    | @@ -21,7 +21,7 @@ pipe = pipeline( | |
| 21 | 
             
            )
         | 
| 22 |  | 
| 23 | 
             
            # Original model setup
         | 
| 24 | 
            -
            repo_id = " | 
| 25 | 
             
            model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
         | 
| 26 | 
             
            text_tokenizer = AutoTokenizer.from_pretrained(repo_id)
         | 
| 27 | 
             
            description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
         | 
| @@ -213,7 +213,7 @@ with gr.Blocks(css=css) as block: | |
| 213 | 
             
                gr.HTML(
         | 
| 214 | 
             
                    """<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for
         | 
| 215 | 
             
            high-fidelity text-to-speech (TTS) models.</p> 
         | 
| 216 | 
            -
            <p>This multilingual model supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.</p>
         | 
| 217 | 
             
            <p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>"""
         | 
| 218 | 
             
                )
         | 
| 219 |  | 
|  | |
| 21 | 
             
            )
         | 
| 22 |  | 
| 23 | 
             
            # Original model setup
         | 
| 24 | 
            +
            repo_id = "parler-tts/parler-tts-mini-multilingual"
         | 
| 25 | 
             
            model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
         | 
| 26 | 
             
            text_tokenizer = AutoTokenizer.from_pretrained(repo_id)
         | 
| 27 | 
             
            description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
         | 
|  | |
| 213 | 
             
                gr.HTML(
         | 
| 214 | 
             
                    """<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for
         | 
| 215 | 
             
            high-fidelity text-to-speech (TTS) models.</p> 
         | 
| 216 | 
            +
            <p>This <a href="https://huggingface.co/parler-tts/parler-tts-mini-multilingual">multilingual model</a> supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.</p>
         | 
| 217 | 
             
            <p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>"""
         | 
| 218 | 
             
                )
         | 
| 219 |  | 
 
			
