wip
Browse files- app.py +117 -224
- src/about.py +12 -11
app.py
CHANGED
|
@@ -8,7 +8,6 @@ from pathlib import Path
|
|
| 8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 9 |
from huggingface_hub import snapshot_download
|
| 10 |
|
| 11 |
-
|
| 12 |
from src.about import (
|
| 13 |
CITATION_BUTTON_LABEL,
|
| 14 |
CITATION_BUTTON_TEXT,
|
|
@@ -19,268 +18,162 @@ from src.about import (
|
|
| 19 |
ABOUT_TEXT
|
| 20 |
)
|
| 21 |
from src.display.css_html_js import custom_css
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# Precision
|
| 34 |
-
# )
|
| 35 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 36 |
-
|
| 37 |
-
try:
|
| 38 |
-
print(EVAL_RESULTS_PATH)
|
| 39 |
-
snapshot_download(
|
| 40 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 41 |
-
)
|
| 42 |
-
except Exception:
|
| 43 |
-
pass
|
| 44 |
-
# restart_space()
|
| 45 |
-
|
| 46 |
-
SUBSET_COUNTS = {
|
| 47 |
-
"Alignment-Object": 250,
|
| 48 |
-
"Alignment-Attribute": 229,
|
| 49 |
-
"Alignment-Action": 115,
|
| 50 |
-
"Alignment-Count": 55,
|
| 51 |
-
"Alignment-Location": 75,
|
| 52 |
-
"Safety-Toxicity-Crime": 29,
|
| 53 |
-
"Safety-Toxicity-Shocking": 31,
|
| 54 |
-
"Safety-Toxicity-Disgust": 42,
|
| 55 |
-
"Safety-Nsfw-Evident": 197,
|
| 56 |
-
"Safety-Nsfw-Evasive": 177,
|
| 57 |
-
"Safety-Nsfw-Subtle": 98,
|
| 58 |
-
"Quality-Distortion-Human_face": 169,
|
| 59 |
-
"Quality-Distortion-Human_limb": 152,
|
| 60 |
-
"Quality-Distortion-Object": 100,
|
| 61 |
-
"Quality-Blurry-Defocused": 350,
|
| 62 |
-
"Quality-Blurry-Motion": 350,
|
| 63 |
-
"Bias-Age": 80,
|
| 64 |
-
"Bias-Gender": 140,
|
| 65 |
-
"Bias-Race": 140,
|
| 66 |
-
"Bias-Nationality": 120,
|
| 67 |
-
"Bias-Religion": 60,
|
| 68 |
}
|
| 69 |
|
| 70 |
-
|
| 71 |
-
"
|
| 72 |
-
"
|
| 73 |
-
"
|
| 74 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
}
|
| 76 |
|
|
|
|
|
|
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
# "Closesource VLM": "#ffcd75",
|
| 91 |
-
# "Others": "#75809c",
|
| 92 |
-
|
| 93 |
-
# # #7497db #E8ECF2 #ffcd75 #75809c
|
| 94 |
-
# }
|
| 95 |
-
# def color_model_type_column(df, color_map):
|
| 96 |
-
# """
|
| 97 |
-
# Apply color to the 'Modality' column of the DataFrame based on a given color mapping.
|
| 98 |
-
|
| 99 |
-
# Parameters:
|
| 100 |
-
# df (pd.DataFrame): The DataFrame containing the 'Modality' column.
|
| 101 |
-
# color_map (dict): A dictionary mapping model types to colors.
|
| 102 |
-
|
| 103 |
-
# Returns:
|
| 104 |
-
# pd.Styler: The styled DataFrame.
|
| 105 |
-
# """
|
| 106 |
-
# # Function to apply color based on the model type
|
| 107 |
-
# def apply_color(val):
|
| 108 |
-
# color = color_map.get(val, "default") # Default color if not specified in color_map
|
| 109 |
-
# return f'background-color: {color}'
|
| 110 |
|
| 111 |
-
#
|
| 112 |
-
#
|
| 113 |
-
|
| 114 |
-
#
|
| 115 |
-
|
| 116 |
-
# return df.style.applymap(apply_color, subset=['Modality']).format(format_dict, na_rep='')
|
| 117 |
|
| 118 |
-
def regex_table(dataframe, regex, filter_button,
|
| 119 |
-
"""
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
# Split regex statement by comma and trim whitespace around regexes
|
| 123 |
-
regex_list = [x.strip() for x in regex.split(",")]
|
| 124 |
-
# Join the list into a single regex pattern with '|' acting as OR
|
| 125 |
-
combined_regex = '|'.join(regex_list)
|
| 126 |
|
| 127 |
-
#
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
if "Image-Text-to-Text" not in filter_button:
|
| 131 |
-
dataframe = dataframe[~dataframe["Modality"].str.contains("Image-Text-to-Text", case=False, na=False)]
|
| 132 |
-
if "Video-Text-to-Text" not in filter_button:
|
| 133 |
-
dataframe = dataframe[~dataframe["Modality"].str.contains("Video-Text-to-Text", case=False, na=False)]
|
| 134 |
-
# Filter the dataframe such that 'model' contains any of the regex patterns
|
| 135 |
-
data = dataframe[dataframe["Model"].str.contains(combined_regex, case=False, na=False)]
|
| 136 |
-
|
| 137 |
-
data.reset_index(drop=True, inplace=True)
|
| 138 |
-
|
| 139 |
-
# replace column '' with count/rank
|
| 140 |
-
data.insert(0, '', range(1, 1 + len(data)))
|
| 141 |
|
| 142 |
-
#
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
df = pd.DataFrame()
|
| 153 |
-
for file in files:
|
| 154 |
-
if not file.endswith(".json"):
|
| 155 |
-
continue
|
| 156 |
-
with open(results_path / file) as rf:
|
| 157 |
-
result = json.load(rf)
|
| 158 |
-
result = pd.DataFrame(result)
|
| 159 |
-
df = pd.concat([result, df])
|
| 160 |
df.reset_index(drop=True, inplace=True)
|
| 161 |
-
return df
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
def avg_all_perspective(orig_df: pd.DataFrame, columns_name: list, meta_data=META_DATA, perspective_counts=PERSPECTIVE_COUNTS):
|
| 165 |
-
new_df = orig_df[meta_data + columns_name]
|
| 166 |
-
new_perspective_counts = {col: perspective_counts[col] for col in columns_name}
|
| 167 |
-
total_count = sum(perspective_counts.values())
|
| 168 |
-
weights = {perspective: count / total_count for perspective, count in perspective_counts.items()}
|
| 169 |
-
def calculate_weighted_avg(row):
|
| 170 |
-
weighted_sum = sum(row[col] * weights[col] for col in columns_name)
|
| 171 |
-
return weighted_sum
|
| 172 |
-
new_df["Overall Score"] = new_df.apply(calculate_weighted_avg, axis=1)
|
| 173 |
-
|
| 174 |
-
cols = meta_data + ["Overall Score"] + columns_name
|
| 175 |
-
new_df = new_df[cols].sort_values(by="Overall Score", ascending=False).reset_index(drop=True)
|
| 176 |
-
return new_df
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
],
|
| 186 |
-
"Modality":[
|
| 187 |
-
"Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text",
|
| 188 |
-
"Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text",
|
| 189 |
-
"Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text",
|
| 190 |
-
"Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text",
|
| 191 |
-
"Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text", "Image-Text-to-Text",
|
| 192 |
-
],
|
| 193 |
-
"Correctness of Information": [
|
| 194 |
-
100.00, 100.00, 100.00, 100.00,
|
| 195 |
-
100.00, 100.00, 100.00, 100.00,
|
| 196 |
-
100.00, 100.00, 100.00, 100.00,
|
| 197 |
-
100.00, 100.00, 100.00, 100.00,
|
| 198 |
-
100.00, 100.00, 100.00, 100.00,
|
| 199 |
-
],
|
| 200 |
-
"Detail Orientation": [
|
| 201 |
-
100.00, 100.00, 100.00, 100.00,
|
| 202 |
-
100.00, 100.00, 100.00, 100.00,
|
| 203 |
-
100.00, 100.00, 100.00, 100.00,
|
| 204 |
-
100.00, 100.00, 100.00, 100.00,
|
| 205 |
-
100.00, 100.00, 100.00, 100.00,
|
| 206 |
-
],
|
| 207 |
-
"Safety": [
|
| 208 |
-
100.00, 100.00, 100.00, 100.00,
|
| 209 |
-
100.00, 100.00, 100.00, 100.00,
|
| 210 |
-
100.00, 100.00, 100.00, 100.00,
|
| 211 |
-
100.00, 100.00, 100.00, 100.00,
|
| 212 |
-
100.00, 100.00, 100.00, 100.00,
|
| 213 |
-
],
|
| 214 |
-
"AVG": [
|
| 215 |
-
100.00, 100.00, 100.00, 100.00,
|
| 216 |
-
100.00, 100.00, 100.00, 100.00,
|
| 217 |
-
100.00, 100.00, 100.00, 100.00,
|
| 218 |
-
100.00, 100.00, 100.00, 100.00,
|
| 219 |
-
100.00, 100.00, 100.00, 100.00,
|
| 220 |
-
]
|
| 221 |
-
}
|
| 222 |
-
df = pd.DataFrame(data)
|
| 223 |
-
total_models = len(df)
|
| 224 |
|
| 225 |
with gr.Blocks(css=custom_css) as app:
|
|
|
|
| 226 |
with gr.Row():
|
| 227 |
with gr.Column(scale=6):
|
| 228 |
gr.Markdown(INTRODUCTION_TEXT.format(str(total_models)))
|
| 229 |
-
with gr.Column(scale=4):
|
| 230 |
-
gr.Markdown("")
|
| 231 |
-
# gr.HTML(BGB_LOGO, elem_classes="logo")
|
| 232 |
|
| 233 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 234 |
-
with gr.TabItem("🏆
|
| 235 |
with gr.Row():
|
| 236 |
search_overall = gr.Textbox(
|
| 237 |
label="Model Search (delimit with , )",
|
| 238 |
-
placeholder="🔍 Search model (separate multiple queries with
|
| 239 |
show_label=False
|
| 240 |
)
|
| 241 |
-
|
| 242 |
-
choices=
|
| 243 |
-
value=
|
| 244 |
-
label="
|
| 245 |
-
show_label=False,
|
| 246 |
-
interactive=True,
|
| 247 |
)
|
|
|
|
| 248 |
with gr.Row():
|
| 249 |
-
|
| 250 |
df,
|
| 251 |
headers=df.columns.tolist(),
|
| 252 |
-
elem_id="
|
| 253 |
wrap=True,
|
| 254 |
visible=False,
|
|
|
|
| 255 |
)
|
| 256 |
-
|
| 257 |
-
regex_table(
|
| 258 |
-
df.copy(),
|
| 259 |
-
"",
|
| 260 |
-
["Video-Text-to-Text", "Image-Text-to-Text"]
|
| 261 |
-
),
|
| 262 |
headers=df.columns.tolist(),
|
| 263 |
-
elem_id="
|
| 264 |
wrap=True,
|
|
|
|
|
|
|
| 265 |
)
|
|
|
|
| 266 |
with gr.TabItem("About"):
|
| 267 |
with gr.Row():
|
| 268 |
gr.Markdown(ABOUT_TEXT)
|
| 269 |
|
| 270 |
with gr.Accordion("📚 Citation", open=False):
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
|
|
|
| 281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
scheduler = BackgroundScheduler()
|
| 283 |
-
scheduler.add_job(
|
| 284 |
scheduler.start()
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
| 8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 9 |
from huggingface_hub import snapshot_download
|
| 10 |
|
|
|
|
| 11 |
from src.about import (
|
| 12 |
CITATION_BUTTON_LABEL,
|
| 13 |
CITATION_BUTTON_TEXT,
|
|
|
|
| 18 |
ABOUT_TEXT
|
| 19 |
)
|
| 20 |
from src.display.css_html_js import custom_css
|
| 21 |
+
from src.display.formatting import has_no_nan_values, make_clickable_model, model_hyperlink
|
| 22 |
+
|
| 23 |
+
# 定义模型性能数据和链接
|
| 24 |
+
model_links = {
|
| 25 |
+
"LLaVA-v1.5-7B†": "https://huggingface.co/liuhaotian/llava-v1.5-7b",
|
| 26 |
+
"Qwen2-VL-7B-Instruct†": "https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct",
|
| 27 |
+
"Qwen2-Audio-7B-Instruct†": "https://huggingface.co/Qwen/Qwen2-Audio-7B-Instruct",
|
| 28 |
+
"Chameleon-7B†": "https://huggingface.co/facebook/chameleon-7b",
|
| 29 |
+
"Llama3.1-8B-Instruct†": "https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct",
|
| 30 |
+
"Gemini-1.5-Pro†": "https://deepmind.google/technologies/gemini/pro/",
|
| 31 |
+
"GPT-4o†": "https://openai.com/index/hello-gpt-4o/"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
}
|
| 33 |
|
| 34 |
+
data = {
|
| 35 |
+
"Model": list(model_links.keys()),
|
| 36 |
+
"Perception": [2.66, 2.76, 3.58, 1.44, 1.05, 5.36, 2.66],
|
| 37 |
+
"Reasoning": [2.67, 3.07, 4.53, 2.97, 1.20, 5.67, 3.48],
|
| 38 |
+
"IF": [2.50, 2.40, 3.40, 2.80, 1.20, 6.70, 4.20],
|
| 39 |
+
"Safety": [2.90, 4.05, 2.65, 2.45, 1.35, 6.70, 5.15],
|
| 40 |
+
"AMU Score": [2.68, 3.07, 3.54, 2.41, 1.20, 6.11, 3.87],
|
| 41 |
+
"Modality Selection": [0.182, 0.177, 0.190, 0.156, 0.231, 0.227, 0.266],
|
| 42 |
+
"Instruction Following": [6.61, 7.01, 6.69, 6.09, 7.47, 8.62, 8.62],
|
| 43 |
+
"Modality Synergy": [0.43, 0.58, 0.51, 0.54, 0.60, 0.52, 0.58],
|
| 44 |
+
"AMG Score": [1.56, 2.16, 1.97, 1.57, 3.08, 3.05, 3.96],
|
| 45 |
+
"Overall": [2.12, 2.62, 2.73, 1.99, 2.14, 4.58, 3.92]
|
| 46 |
}
|
| 47 |
|
| 48 |
+
df = pd.DataFrame(data).sort_values(by='Overall', ascending=False)
|
| 49 |
+
total_models = len(df)
|
| 50 |
|
| 51 |
+
# 定义列组
|
| 52 |
+
COLUMN_GROUPS = {
|
| 53 |
+
"ALL": ["Model", "Perception", "Reasoning", "IF", "Safety", "AMU Score",
|
| 54 |
+
"Modality Selection", "Instruction Following", "Modality Synergy",
|
| 55 |
+
"AMG Score", "Overall"],
|
| 56 |
+
"AMU": ["Model", "Perception", "Reasoning", "IF", "Safety", "AMU Score"],
|
| 57 |
+
"AMG": ["Model", "Modality Selection", "Instruction Following", "Modality Synergy", "AMG Score"]
|
| 58 |
+
}
|
| 59 |
|
| 60 |
+
def format_table(df):
|
| 61 |
+
"""Format the dataframe for display"""
|
| 62 |
+
# 设置列的显示格式
|
| 63 |
+
float_cols = df.select_dtypes(include=['float64']).columns
|
| 64 |
+
for col in float_cols:
|
| 65 |
+
df[col] = df[col].apply(lambda x: f"{x:.2f}") # 修改为保留2位小数
|
| 66 |
+
|
| 67 |
+
bold_columns = ['AMU Score', 'AMG Score', 'Overall']
|
| 68 |
+
for col in bold_columns:
|
| 69 |
+
if col in df.columns:
|
| 70 |
+
df[col] = df[col].apply(lambda x: f'**{x}**')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
# 添加模型链接
|
| 73 |
+
# df['Model'] = df['Model'].apply(lambda x: f'<a href="{model_links[x]}" target="_blank">{x}</a>')
|
| 74 |
+
df['Model'] = df['Model'].apply(lambda x: f'[{x}]({model_links[x]})')
|
| 75 |
+
# df['Model'] = df.apply(lambda x: model_hyperlink(model_links[x['Model']], x['Model']), axis=1)
|
| 76 |
+
return df
|
|
|
|
| 77 |
|
| 78 |
+
def regex_table(dataframe, regex, filter_button, column_group="ALL"):
|
| 79 |
+
"""Takes a model name as a regex, then returns only the rows that has that in it."""
|
| 80 |
+
# 深拷贝确保不修改原始数据
|
| 81 |
+
df = dataframe.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
# 选择要显示的列
|
| 84 |
+
columns_to_show = COLUMN_GROUPS.get(column_group, COLUMN_GROUPS["ALL"])
|
| 85 |
+
df = df[columns_to_show]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
# Split regex statement by comma and trim whitespace around regexes
|
| 88 |
+
if regex:
|
| 89 |
+
regex_list = [x.strip() for x in regex.split(",")]
|
| 90 |
+
# Join the list into a single regex pattern with '|' acting as OR
|
| 91 |
+
combined_regex = '|'.join(regex_list)
|
| 92 |
+
# Filter based on model name regex
|
| 93 |
+
df = df[df["Model"].str.contains(combined_regex, case=False, na=False)]
|
| 94 |
+
|
| 95 |
+
df = df.sort_values(by='Overall' if 'Overall' in columns_to_show else columns_to_show[-1], ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
df.reset_index(drop=True, inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
# Format numbers and add links
|
| 99 |
+
df = format_table(df)
|
| 100 |
+
|
| 101 |
+
# Add index column
|
| 102 |
+
df.insert(0, '', range(1, 1 + len(df)))
|
| 103 |
+
|
| 104 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
with gr.Blocks(css=custom_css) as app:
|
| 107 |
+
gr.HTML(TITLE)
|
| 108 |
with gr.Row():
|
| 109 |
with gr.Column(scale=6):
|
| 110 |
gr.Markdown(INTRODUCTION_TEXT.format(str(total_models)))
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 113 |
+
with gr.TabItem("🏆 Model Performance Leaderboard"):
|
| 114 |
with gr.Row():
|
| 115 |
search_overall = gr.Textbox(
|
| 116 |
label="Model Search (delimit with , )",
|
| 117 |
+
placeholder="🔍 Search model (separate multiple queries with ,) and press ENTER...",
|
| 118 |
show_label=False
|
| 119 |
)
|
| 120 |
+
column_group = gr.Radio(
|
| 121 |
+
choices=list(COLUMN_GROUPS.keys()),
|
| 122 |
+
value="ALL",
|
| 123 |
+
label="Select columns to show"
|
|
|
|
|
|
|
| 124 |
)
|
| 125 |
+
|
| 126 |
with gr.Row():
|
| 127 |
+
performance_table_hidden = gr.Dataframe(
|
| 128 |
df,
|
| 129 |
headers=df.columns.tolist(),
|
| 130 |
+
elem_id="performance_table_hidden",
|
| 131 |
wrap=True,
|
| 132 |
visible=False,
|
| 133 |
+
datatype='markdown',
|
| 134 |
)
|
| 135 |
+
performance_table = gr.Dataframe(
|
| 136 |
+
regex_table(df.copy(), "", []),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
headers=df.columns.tolist(),
|
| 138 |
+
elem_id="performance_table",
|
| 139 |
wrap=True,
|
| 140 |
+
show_label=False,
|
| 141 |
+
datatype='markdown',
|
| 142 |
)
|
| 143 |
+
|
| 144 |
with gr.TabItem("About"):
|
| 145 |
with gr.Row():
|
| 146 |
gr.Markdown(ABOUT_TEXT)
|
| 147 |
|
| 148 |
with gr.Accordion("📚 Citation", open=False):
|
| 149 |
+
citation_button = gr.Textbox(
|
| 150 |
+
value=CITATION_BUTTON_TEXT,
|
| 151 |
+
lines=7,
|
| 152 |
+
label="Copy the following to cite these results.",
|
| 153 |
+
elem_id="citation-button",
|
| 154 |
+
show_copy_button=True,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Set up event handlers
|
| 158 |
+
def update_table(search_text, selected_group):
|
| 159 |
+
return regex_table(df, search_text, [], selected_group)
|
| 160 |
|
| 161 |
+
search_overall.change(
|
| 162 |
+
update_table,
|
| 163 |
+
inputs=[search_overall, column_group],
|
| 164 |
+
outputs=performance_table
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
column_group.change(
|
| 168 |
+
update_table,
|
| 169 |
+
inputs=[search_overall, column_group],
|
| 170 |
+
outputs=performance_table
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# Set up scheduler
|
| 174 |
scheduler = BackgroundScheduler()
|
| 175 |
+
scheduler.add_job(lambda: None, "interval", seconds=18000) # every 5 hours
|
| 176 |
scheduler.start()
|
| 177 |
+
|
| 178 |
+
# Launch the app
|
| 179 |
+
app.launch(share=True)
|
src/about.py
CHANGED
|
@@ -21,15 +21,15 @@ NUM_FEWSHOT = 0 # Change with your few shot
|
|
| 21 |
|
| 22 |
|
| 23 |
# Your leaderboard name
|
| 24 |
-
TITLE = """<h1 align="center" id="space-title">
|
| 25 |
|
| 26 |
# MJB_LOGO = '<img src="" alt="Logo" style="width: 100%; display: block; margin: auto;">'
|
| 27 |
|
| 28 |
# What does your leaderboard evaluate?
|
| 29 |
INTRODUCTION_TEXT = """
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
"""
|
| 34 |
|
| 35 |
# Which evaluations are you running? how can people reproduce what you have?
|
|
@@ -41,16 +41,17 @@ EVALUATION_QUEUE_TEXT = """
|
|
| 41 |
|
| 42 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 43 |
CITATION_BUTTON_TEXT = """
|
| 44 |
-
@
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
}
|
| 52 |
"""
|
| 53 |
|
| 54 |
|
| 55 |
ABOUT_TEXT = """
|
|
|
|
| 56 |
"""
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
# Your leaderboard name
|
| 24 |
+
TITLE = """<h1 align="center" id="space-title">Eval-Anything Leaderboard</h1>"""
|
| 25 |
|
| 26 |
# MJB_LOGO = '<img src="" alt="Logo" style="width: 100%; display: block; margin: auto;">'
|
| 27 |
|
| 28 |
# What does your leaderboard evaluate?
|
| 29 |
INTRODUCTION_TEXT = """
|
| 30 |
+
Eval-anything is a framework designed specifically for evaluating all-modality models, and it is a part of the [Align-Anything](https://github.com/PKU-Alignment/align-anything) framework. It consists of two main tasks: All-Modality Understanding (AMU) and All-Modality Generation (AMG). AMU assesses a model's ability to simultaneously process and integrate information from all modalities, including text, images, audio, and video. On the other hand, AMG evaluates a model's capability to autonomously select output modalities based on user instructions and synergistically utilize different modalities to generate output. Eval-anything aims to comprehensively assess the ability of all-modality models to handle heterogeneous data from multiple sources, providing a reliable evaluation tool for this field.
|
| 31 |
+
|
| 32 |
+
**Note:** Since most current open-source models lack support for all-modality output, (†) indicates that models are used as agents to invoke [AudioLDM2-Large](https://huggingface.co/cvssp/audioldm2-large) and [FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) for audio and image generation.
|
| 33 |
"""
|
| 34 |
|
| 35 |
# Which evaluations are you running? how can people reproduce what you have?
|
|
|
|
| 41 |
|
| 42 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 43 |
CITATION_BUTTON_TEXT = """
|
| 44 |
+
@misc{align_anything,
|
| 45 |
+
author = {PKU-Alignment Team},
|
| 46 |
+
title = {Align Anything: training all modality models to follow instructions with unified language feedback},
|
| 47 |
+
year = {2024},
|
| 48 |
+
publisher = {GitHub},
|
| 49 |
+
journal = {GitHub repository},
|
| 50 |
+
howpublished = {\\url{https://github.com/PKU-Alignment/align-anything}},
|
| 51 |
}
|
| 52 |
"""
|
| 53 |
|
| 54 |
|
| 55 |
ABOUT_TEXT = """
|
| 56 |
+
We will provide methods to upload more model evaluation results in the future.
|
| 57 |
"""
|