Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,10 +13,10 @@ small_models = [
|
|
| 13 |
"gpt2", # ~124M parameters
|
| 14 |
"EleutherAI/gpt-neo-125M", # ~125M parameters
|
| 15 |
"sshleifer/tiny-gpt2", # extremely small variant
|
| 16 |
-
"microsoft/DialoGPT-small" #
|
| 17 |
]
|
| 18 |
|
| 19 |
-
# Define five languages
|
| 20 |
languages = {
|
| 21 |
"en": "English",
|
| 22 |
"de": "German",
|
|
@@ -25,7 +25,7 @@ languages = {
|
|
| 25 |
"pt": "Portuguese"
|
| 26 |
}
|
| 27 |
|
| 28 |
-
# Define two cost-effective grammar evaluation models
|
| 29 |
grammar_model_names = [
|
| 30 |
"vennify/t5-base-grammar-correction",
|
| 31 |
"hassaanik/grammar-correction-model"
|
|
@@ -34,7 +34,7 @@ grammar_model_names = [
|
|
| 34 |
# Functions to load pipelines on demand
|
| 35 |
def load_generation_pipeline(model_name):
|
| 36 |
try:
|
| 37 |
-
#
|
| 38 |
return pipeline("text-generation", model=model_name)
|
| 39 |
except Exception as e:
|
| 40 |
print(f"Error loading generation model {model_name}: {e}")
|
|
@@ -62,6 +62,15 @@ def is_palindrome(text):
|
|
| 62 |
cleaned = clean_text(text)
|
| 63 |
return cleaned == cleaned[::-1]
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
def grammar_prompt(pal, lang):
|
| 66 |
return f'''Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. Only return a number with no explanation:\n\n"{pal}"\n'''
|
| 67 |
|
|
@@ -75,28 +84,25 @@ def extract_score(text):
|
|
| 75 |
# Main benchmark function that runs all tests at once
|
| 76 |
def run_benchmark_all():
|
| 77 |
results = []
|
|
|
|
| 78 |
for model_name in small_models:
|
| 79 |
-
# Load the generation pipeline for the current small model
|
| 80 |
gen_pipeline = load_generation_pipeline(model_name)
|
| 81 |
if gen_pipeline is None:
|
| 82 |
-
continue # Skip
|
| 83 |
|
|
|
|
| 84 |
for code, lang in languages.items():
|
| 85 |
-
|
| 86 |
-
prompt = (
|
| 87 |
-
f"Write the longest original palindrome you can in {lang}. "
|
| 88 |
-
"It should be creative and not a known palindrome. "
|
| 89 |
-
"If it is not a correct palindrome, you will lose points according to how correct it is."
|
| 90 |
-
)
|
| 91 |
try:
|
|
|
|
| 92 |
gen_output = gen_pipeline(prompt, max_new_tokens=50, do_sample=True)[0]['generated_text'].strip()
|
| 93 |
except Exception as e:
|
| 94 |
gen_output = f"Error generating text: {e}"
|
| 95 |
-
|
| 96 |
valid = is_palindrome(gen_output)
|
| 97 |
cleaned_len = len(clean_text(gen_output))
|
| 98 |
|
| 99 |
-
#
|
| 100 |
scores = []
|
| 101 |
for rater in rater_models:
|
| 102 |
rprompt = grammar_prompt(gen_output, lang)
|
|
@@ -107,7 +113,7 @@ def run_benchmark_all():
|
|
| 107 |
except Exception as e:
|
| 108 |
scores.append(0)
|
| 109 |
avg_score = np.mean(scores) if scores else 0
|
| 110 |
-
#
|
| 111 |
penalty = (avg_score / 100) if valid else (avg_score / 100) * 0.5
|
| 112 |
final_score = round(cleaned_len * penalty, 2)
|
| 113 |
|
|
@@ -124,10 +130,10 @@ def run_benchmark_all():
|
|
| 124 |
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True)
|
| 125 |
return gr.Dataframe(df)
|
| 126 |
|
| 127 |
-
# Build Gradio UI using Blocks (canvas layout)
|
| 128 |
with gr.Blocks(title="Small Model Palindrome Benchmark") as demo:
|
| 129 |
gr.Markdown("# Small Model Palindrome Benchmark")
|
| 130 |
-
gr.Markdown("This benchmark
|
| 131 |
|
| 132 |
with gr.Row():
|
| 133 |
run_button = gr.Button("Run All Benchmarks")
|
|
|
|
| 13 |
"gpt2", # ~124M parameters
|
| 14 |
"EleutherAI/gpt-neo-125M", # ~125M parameters
|
| 15 |
"sshleifer/tiny-gpt2", # extremely small variant
|
| 16 |
+
"microsoft/DialoGPT-small" # DialoGPT small
|
| 17 |
]
|
| 18 |
|
| 19 |
+
# Define five languages: English, German, Spanish, French, Portuguese
|
| 20 |
languages = {
|
| 21 |
"en": "English",
|
| 22 |
"de": "German",
|
|
|
|
| 25 |
"pt": "Portuguese"
|
| 26 |
}
|
| 27 |
|
| 28 |
+
# Define two cost-effective grammar evaluation models (unchanged)
|
| 29 |
grammar_model_names = [
|
| 30 |
"vennify/t5-base-grammar-correction",
|
| 31 |
"hassaanik/grammar-correction-model"
|
|
|
|
| 34 |
# Functions to load pipelines on demand
|
| 35 |
def load_generation_pipeline(model_name):
|
| 36 |
try:
|
| 37 |
+
# Using text-generation pipeline for causal LM models
|
| 38 |
return pipeline("text-generation", model=model_name)
|
| 39 |
except Exception as e:
|
| 40 |
print(f"Error loading generation model {model_name}: {e}")
|
|
|
|
| 62 |
cleaned = clean_text(text)
|
| 63 |
return cleaned == cleaned[::-1]
|
| 64 |
|
| 65 |
+
# Updated prompt that instructs the model to output ONLY the palindrome.
|
| 66 |
+
def build_prompt(lang):
|
| 67 |
+
return (
|
| 68 |
+
f"Instruction: Write the longest original palindrome you can in {lang}. "
|
| 69 |
+
"The output should contain nothing else but the palindrome. "
|
| 70 |
+
"Do not include any additional commentary or repeated instructions. "
|
| 71 |
+
"Palindrome: "
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
def grammar_prompt(pal, lang):
|
| 75 |
return f'''Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. Only return a number with no explanation:\n\n"{pal}"\n'''
|
| 76 |
|
|
|
|
| 84 |
# Main benchmark function that runs all tests at once
|
| 85 |
def run_benchmark_all():
|
| 86 |
results = []
|
| 87 |
+
# Iterate over each small model
|
| 88 |
for model_name in small_models:
|
|
|
|
| 89 |
gen_pipeline = load_generation_pipeline(model_name)
|
| 90 |
if gen_pipeline is None:
|
| 91 |
+
continue # Skip this model if it fails to load
|
| 92 |
|
| 93 |
+
# Iterate over each language
|
| 94 |
for code, lang in languages.items():
|
| 95 |
+
prompt = build_prompt(lang)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
try:
|
| 97 |
+
# Generate text with a moderate max token limit
|
| 98 |
gen_output = gen_pipeline(prompt, max_new_tokens=50, do_sample=True)[0]['generated_text'].strip()
|
| 99 |
except Exception as e:
|
| 100 |
gen_output = f"Error generating text: {e}"
|
| 101 |
+
# Check if the generated output is a palindrome
|
| 102 |
valid = is_palindrome(gen_output)
|
| 103 |
cleaned_len = len(clean_text(gen_output))
|
| 104 |
|
| 105 |
+
# Evaluate grammar using both grammar models
|
| 106 |
scores = []
|
| 107 |
for rater in rater_models:
|
| 108 |
rprompt = grammar_prompt(gen_output, lang)
|
|
|
|
| 113 |
except Exception as e:
|
| 114 |
scores.append(0)
|
| 115 |
avg_score = np.mean(scores) if scores else 0
|
| 116 |
+
# Penalize if the generated text is not a valid palindrome
|
| 117 |
penalty = (avg_score / 100) if valid else (avg_score / 100) * 0.5
|
| 118 |
final_score = round(cleaned_len * penalty, 2)
|
| 119 |
|
|
|
|
| 130 |
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True)
|
| 131 |
return gr.Dataframe(df)
|
| 132 |
|
| 133 |
+
# Build the Gradio UI using Blocks (canvas layout)
|
| 134 |
with gr.Blocks(title="Small Model Palindrome Benchmark") as demo:
|
| 135 |
gr.Markdown("# Small Model Palindrome Benchmark")
|
| 136 |
+
gr.Markdown("This benchmark automatically runs over 5 small text-generation models and 5 languages (English, German, Spanish, French, Portuguese).")
|
| 137 |
|
| 138 |
with gr.Row():
|
| 139 |
run_button = gr.Button("Run All Benchmarks")
|