ReadRight / agent.py
ParulPandey's picture
Upload 4 files
2253319 verified
raw
history blame
38.8 kB
import os
import requests
from smolagents.tools import tool
from difflib import SequenceMatcher
try:
from gradio_client import Client
except ImportError:
# Fallback import for older versions
import gradio_client
Client = gradio_client.Client
from google import genai
from google.genai import types
import json
import time
import numpy as np
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Configure API keys
TTS_API = os.getenv("TTS_API")
STT_API = os.getenv("STT_API")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Configure Google Gemini client
if GOOGLE_API_KEY:
gemini_client = genai.Client(api_key=GOOGLE_API_KEY)
@tool
def generate_story(name: str, grade: str, topic: str) -> str:
"""
Generate a short, age-appropriate story for reading practice using LLM.
Args:
name (str): The child's name.
grade (str): The student's grade level, e.g., "Grade 3".
topic (str): The story topic, e.g., "space", "animals".
Returns:
str: Generated story text.
"""
# Extract grade number and determine age/reading level
grade_num = int(''.join(filter(str.isdigit, grade)) or "3")
age = grade_num + 5 # Grade 1 = ~6 years old, Grade 6 = ~11 years old
# Dynamically determine story parameters based on grade
if grade_num <= 2:
# Grades 1-2: Very simple stories
story_length = "2-3 short sentences"
vocabulary_level = "very simple words (mostly 1-2 syllables)"
sentence_structure = "short, simple sentences"
complexity = "basic concepts"
reading_level = "beginner"
elif grade_num <= 4:
# Grades 3-4: Intermediate stories
story_length = "1-2 short paragraphs"
vocabulary_level = "age-appropriate words with some longer words"
sentence_structure = "mix of simple and compound sentences"
complexity = "intermediate concepts with some detail"
reading_level = "intermediate"
else:
# Grades 5-6: More advanced stories
story_length = "2-3 paragraphs"
vocabulary_level = "varied vocabulary including descriptive words"
sentence_structure = "complex sentences with descriptive language"
complexity = "detailed concepts and explanations"
reading_level = "advanced elementary"
# Create dynamic, grade-adaptive prompt
prompt = f"""
You are an expert children's reading coach. Create an engaging, educational story for a {age}-year-old child named {name} about {topic}.
GRADE LEVEL: {grade} ({reading_level} level)
Story Requirements:
- Length: {story_length}
- Vocabulary: Use {vocabulary_level}
- Sentence structure: {sentence_structure}
- Complexity: {complexity}
- Include {name} as the main character
- Teach something interesting about {topic}
- End with a positive, encouraging message
- Make it engaging and fun to read aloud
Additional Guidelines:
- For younger students (Grades 1-2): Focus on simple actions, basic emotions, and clear cause-and-effect
- For middle students (Grades 3-4): Include some problem-solving, friendship themes, and basic science/nature facts
- For older students (Grades 5-6): Add character development, more detailed explanations, and encourage curiosity
The story should be perfectly suited for a {grade} student's reading ability and attention span.
Story:
"""
# Use Google Gemini
# Adjust generation parameters based on grade level
max_tokens = 300 if grade_num <= 2 else 600 if grade_num <= 4 else 1000
generation_config = types.GenerateContentConfig(
temperature=0.8,
max_output_tokens=max_tokens,
top_p=0.9,
)
response = gemini_client.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt],
config=generation_config
)
return response.text.strip()
@tool
def text_to_speech(text: str) -> str:
"""
Convert story text into an audio URL via TTS service using the gradio_client.
Args:
text (str): The story to convert to speech.
Returns:
str: URL or file path of the generated audio.
"""
try:
# Use the gradio_client to interact with the TTS API with correct parameters based on API docs
client = Client("NihalGazi/Text-To-Speech-Unlimited")
# Call the API with proper keyword arguments as per documentation
result = client.predict(
prompt=text, # Required: The text to convert to speech
voice="nova", # Voice selection from available options
emotion="neutral", # Required: Emotion style
use_random_seed=True, # Use random seed for variety
specific_seed=12345, # Specific seed value
api_name="/text_to_speech_app"
)
print(f"TTS result: {result}")
print(f"TTS result type: {type(result)}")
# According to API docs, returns tuple of (filepath, status_str)
if isinstance(result, tuple) and len(result) >= 2:
audio_path, status = result[0], result[1]
print(f"TTS Status: {status}")
# Return the audio file path
if audio_path and isinstance(audio_path, str):
print(f"TTS generated audio at: {audio_path}")
return audio_path
else:
print(f"Invalid audio path: {audio_path}")
return None
else:
print(f"Unexpected TTS result format: {result}")
return None
except Exception as e:
print(f"TTS Error: {e}")
import traceback
traceback.print_exc()
return None
@tool
def transcribe_audio(audio_input: str) -> str:
"""
Transcribe the student's audio into text via Whisper STT service.
Using abidlabs/whisper-large-v2 Hugging Face Space API.
Args:
audio_input: Either a file path (str) or tuple (sample_rate, numpy_array) from Gradio
Returns:
str: Transcribed speech text.
"""
try:
print(f"Received audio input: {type(audio_input)}")
# Handle different input formats
if isinstance(audio_input, tuple) and len(audio_input) == 2:
# Gradio microphone format: (sample_rate, numpy_array)
sample_rate, audio_data = audio_input
print(f"Audio tuple: sample_rate={sample_rate}, data_shape={audio_data.shape}")
# Pass the tuple directly to the STT service
audio_for_stt = audio_input
elif isinstance(audio_input, (str, Path)):
audio_for_stt = str(audio_input)
else:
print(f"Unsupported audio input type: {type(audio_input)}")
return "Error: Unsupported audio format. Please try recording again."
if isinstance(audio_for_stt, Path):
audio_for_stt = str(audio_for_stt)
# Initialize client with error handling
print("Initializing Gradio client for STT...")
try:
client = Client("abidlabs/whisper-large-v2")
except Exception as client_error:
print(f"Failed to initialize client: {client_error}")
# Try alternative approach
try:
print("Trying direct API approach...")
return "Error: STT service initialization failed. Please try again."
except Exception as fallback_error:
print(f"Fallback also failed: {fallback_error}")
return "Error: Speech recognition service unavailable. Please try again later."
print("Sending audio for transcription...")
# Make the API call with timeout and error handling
try:
if isinstance(audio_for_stt, tuple):
result = client.predict(audio_for_stt, api_name="/predict")
else:
result = client.predict(audio_for_stt, api_name="/predict")
except Exception as api_error:
print(f"API call failed: {api_error}")
if "extra_headers" in str(api_error):
return "Error: Connection protocol mismatch. Please try recording again."
elif "connection" in str(api_error).lower():
return "Error: Network connection issue. Please check your internet and try again."
else:
return "Error: Transcription service temporarily unavailable. Please try again."
print(f"Raw transcription result: {result}")
print(f"Result type: {type(result)}")
# Handle different result types more robustly
if result is None:
return "Error: No transcription result. Please try speaking more clearly and loudly."
# Extract text from result
transcribed_text = ""
if isinstance(result, str):
transcribed_text = result.strip()
elif isinstance(result, (list, tuple)):
if len(result) > 0:
# Try to find the text in the result structure
transcribed_text = str(result[0]).strip()
print(f"Extracted from list/tuple: {transcribed_text}")
else:
return "Error: Empty transcription result. Please try again."
elif isinstance(result, dict):
# Handle dictionary results - try common keys
transcribed_text = result.get('text', result.get('transcription', str(result))).strip()
print(f"Extracted from dict: {transcribed_text}")
else:
transcribed_text = str(result).strip()
print(f"Converted to string: {transcribed_text}")
# Clean up common API artifacts
transcribed_text = transcribed_text.replace('```', '').replace('json', '').replace('{', '').replace('}', '')
# Validate the transcription
if not transcribed_text or (isinstance(transcribed_text, str) and transcribed_text.lower() in ['', 'none', 'null', 'error', 'undefined']):
return "I couldn't hear any speech clearly. Please try recording again and speak more loudly."
# Ensure transcribed_text is a string before further processing
if not isinstance(transcribed_text, str):
return "I couldn't hear any speech clearly. Please try recording again and speak more loudly."
# Check for common error messages from the API
error_indicators = ['error', 'failed', 'could not', 'unable to', 'timeout']
if any(indicator in transcribed_text.lower() for indicator in error_indicators):
return "Transcription service had an issue. Please try recording again."
# Clean up the transcribed text
transcribed_text = transcribed_text.replace('\n', ' ').replace('\t', ' ')
# Remove extra whitespace
transcribed_text = ' '.join(transcribed_text.split())
if len(transcribed_text) < 3:
return "The recording was too short or unclear. Please try reading more slowly and clearly."
print(f"Final transcribed text: {transcribed_text}")
return transcribed_text
except ImportError as e:
print(f"Import error: {str(e)}")
return "Error: Missing required libraries. Please check your installation."
except ConnectionError as e:
print(f"Connection error: {str(e)}")
return "Network connection error. Please check your internet connection and try again."
except TimeoutError as e:
print(f"Timeout error: {str(e)}")
return "Transcription service is taking too long. Please try again with a shorter recording."
except Exception as e:
print(f"Unexpected transcription error: {str(e)}")
error_msg = str(e).lower()
# Provide helpful error messages based on the error type
if "timeout" in error_msg or "connection" in error_msg:
return "Network timeout. Please check your internet connection and try again."
elif "file" in error_msg or "path" in error_msg:
return "Audio file error. Please try recording again."
elif "api" in error_msg or "client" in error_msg or "gradio" in error_msg:
return "Transcription service temporarily unavailable. Please try again in a moment."
elif "memory" in error_msg or "size" in error_msg:
return "Audio file is too large or complex. Please try with a shorter recording."
else:
return f"Transcription failed. Please try recording again. If the problem persists, try speaking more clearly."
def compare_texts_for_feedback(original: str, spoken: str) -> str:
"""
Compare the original and spoken text, provide age-appropriate feedback with pronunciation help.
Agentic feedback system that adapts to student needs.
Args:
original (str): The original story text.
spoken (str): The student's transcribed reading.
Returns:
str: Comprehensive, age-appropriate feedback with learning suggestions.
"""
# Check if the spoken text is too short to be meaningful
if not spoken or len(spoken.split()) < 3:
return "⚠️ Your reading was too short. Please try reading the complete story."
# Clean and process text
orig_words = [w.strip(".,!?;:\"'").lower() for w in original.split() if w.strip()]
spoken_words = [w.strip(".,!?;:\"'").lower() for w in spoken.split() if w.strip()]
# Set minimum threshold for overall matching - if nothing matches at all,
# it's likely the student read something completely different
common_words = set(orig_words).intersection(set(spoken_words))
if len(common_words) < max(2, len(orig_words) * 0.1): # At least 2 words or 10% must match
return "⚠️ I couldn't recognize enough words from the story. Please try reading the story text shown on the screen.\n\nReading accuracy: 0.0%"
# Calculate accuracy using sequence matching
matcher = SequenceMatcher(None, orig_words, spoken_words, autojunk=False)
accuracy = matcher.ratio() * 100
# Identify different types of errors using context-aware approach
# Use difflib to get a more accurate understanding of missed words in context
import difflib
d = difflib.Differ()
diff = list(d.compare([w.lower() for w in original.split() if w.strip()],
[w.lower() for w in spoken.split() if w.strip()]))
missed_words = []
for word in diff:
if word.startswith('- '): # Words in original but not in spoken
clean_word = word[2:].strip(".,!?;:\"'").lower()
if clean_word and len(clean_word) > 1: # Avoid punctuation
missed_words.append(clean_word)
# Convert to set to remove duplicates but preserve order for important words
missed_words_set = set(missed_words)
# Extra words (might be mispronunciations or additions)
extra_words = set(spoken_words) - set(orig_words)
# Find mispronounced words (words that sound similar but are different)
mispronounced = find_similar_words(orig_words, spoken_words)
# Prioritize important words (like nouns, longer words) if available
important_missed = [w for w in missed_words if len(w) > 4]
if important_missed:
missed_words_set = set(important_missed) | set([w for w in missed_words if w not in important_missed][:3])
# Generate age-appropriate feedback
return generate_adaptive_feedback(accuracy, missed_words_set, extra_words, mispronounced, len(orig_words))
def find_similar_words(original_words: list, spoken_words: list) -> list:
"""
Find words that might be mispronounced (similar but not exact matches).
Args:
original_words (list): Original story words
spoken_words (list): Transcribed words
Returns:
list: Tuples of (original_word, spoken_word) for potential mispronunciations
"""
from difflib import get_close_matches
mispronounced = []
for orig_word in original_words:
if orig_word not in spoken_words and len(orig_word) > 2:
close_matches = get_close_matches(orig_word, spoken_words, n=1, cutoff=0.6)
if close_matches:
mispronounced.append((orig_word, close_matches[0]))
return mispronounced[:5]
def generate_adaptive_feedback(accuracy: float, missed_words: set, extra_words: set,
mispronounced: list, total_words: int) -> str:
"""
Generate age-appropriate, encouraging feedback with specific learning guidance.
Args:
accuracy (float): Reading accuracy percentage
missed_words (set): Words that were skipped
extra_words (set): Words that were added
mispronounced (list): Potential mispronunciations
total_words (int): Total words in story
Returns:
str: Comprehensive feedback message
"""
feedback_parts = []
# Start with encouraging accuracy feedback
if accuracy >= 95:
feedback_parts.append("🌟 AMAZING! You read almost perfectly!")
elif accuracy >= 85:
feedback_parts.append("🎉 GREAT JOB! You're doing wonderful!")
elif accuracy >= 70:
feedback_parts.append("👍 GOOD WORK! You're getting better!")
elif accuracy >= 50:
feedback_parts.append("😊 NICE TRY! Keep practicing!")
else:
feedback_parts.append("🚀 GREAT START! Every practice makes you better!")
feedback_parts.append(f"Reading accuracy: {accuracy:.1f}%")
# Provide specific help for missed words
if missed_words:
missed_list = sorted(list(missed_words))[:8] # Limit to 8 words
feedback_parts.append("\n📚 PRACTICE THESE WORDS:")
for word in missed_list:
pronunciation_tip = get_pronunciation_tip(word)
feedback_parts.append(f"• {word.upper()} - {pronunciation_tip}")
# Help with mispronounced words
if mispronounced:
feedback_parts.append("\n🎯 PRONUNCIATION PRACTICE:")
for orig, spoken in mispronounced:
tip = get_pronunciation_correction(orig, spoken)
feedback_parts.append(f"• {orig.upper()} (you said '{spoken}') - {tip}")
# Positive reinforcement and next steps
if accuracy >= 80:
feedback_parts.append("\n🏆 You're ready for more challenging stories!")
elif accuracy >= 60:
feedback_parts.append("\n💪 Try reading this story again to improve your score!")
else:
feedback_parts.append("\n🌱 Let's practice with shorter, simpler stories first!")
return "\n".join(feedback_parts)
def get_pronunciation_tip(word: str) -> str:
"""
Generate pronunciation tips for difficult words.
Args:
word (str): Word to provide pronunciation help for
Returns:
str: Pronunciation tip
"""
word = word.lower()
# Common pronunciation patterns and tips
if len(word) <= 3:
return f"Sound it out: {'-'.join(word)}"
elif word.endswith('tion'):
return "Ends with 'shun' sound"
elif word.endswith('sion'):
return "Ends with 'zhun' or 'shun' sound"
elif word.endswith('ed'):
if word[-3] in 'td':
return "Past tense - ends with 'ed' sound"
else:
return "Past tense - ends with 'd' sound"
elif 'th' in word:
return "Put your tongue between your teeth for 'th'"
elif 'ch' in word:
return "Make the 'ch' sound like in 'cheese'"
elif 'sh' in word:
return "Make the 'sh' sound like in 'ship'"
elif word.startswith('kn'):
return "The 'k' is silent, start with the 'n' sound"
elif word.startswith('ph'):
return "The 'ph' makes an 'f' sound"
elif word.startswith('wh'):
return "Starts with 'w' sound (like 'when')"
elif word.endswith('igh'):
return "The 'igh' makes a long 'i' sound like in 'night'"
elif 'ou' in word:
return "The 'ou' often sounds like 'ow' in 'cow'"
elif 'ai' in word:
return "The 'ai' makes the long 'a' sound"
elif 'ea' in word:
return "The 'ea' usually makes the long 'e' sound"
elif len(word) >= 6:
# Break longer words into syllables
return f"Break it down: {break_into_syllables(word)}"
else:
return f"Sound it out slowly: {'-'.join(word[:len(word)//2])}-{'-'.join(word[len(word)//2:])}"
def get_pronunciation_correction(original: str, spoken: str) -> str:
"""
Provide specific correction for mispronounced words.
Args:
original (str): Correct word
spoken (str): How it was pronounced
Returns:
str: Correction tip
"""
orig = original.lower()
spok = spoken.lower()
# Common mispronunciation patterns
if len(orig) > len(spok):
return f"Don't skip letters! Say all sounds in '{orig}'"
elif len(spok) > len(orig):
return f"Not too fast! The word is just '{orig}'"
elif orig[0] != spok[0]:
return f"Starts with '{orig[0]}' sound, not '{spok[0]}'"
elif orig[-1] != spok[-1]:
return f"Ends with '{orig[-1]}' sound"
# Check for vowel confusion
orig_vowels = [c for c in orig if c in 'aeiou']
spok_vowels = [c for c in spok if c in 'aeiou']
if orig_vowels != spok_vowels:
# Find the first different vowel
for i in range(min(len(orig_vowels), len(spok_vowels))):
if orig_vowels[i] != spok_vowels[i]:
vowel_map = {
'a': "ah (like in 'cat')",
'e': "eh (like in 'bed')",
'i': "ih (like in 'sit')",
'o': "oh (like in 'hot')",
'u': "uh (like in 'cup')"
}
correct_sound = vowel_map.get(orig_vowels[i], f"'{orig_vowels[i]}'")
wrong_sound = vowel_map.get(spok_vowels[i], f"'{spok_vowels[i]}'")
return f"Say the vowel sound as {correct_sound}, not {wrong_sound}"
# Default case
return f"Listen carefully: '{orig}' - try saying it slower"
def break_into_syllables(word: str) -> str:
"""
Improved syllable breaking for pronunciation help.
Args:
word (str): Word to break into syllables
Returns:
str: Word broken into syllables
"""
vowels = 'aeiouy'
word = word.lower()
syllables = []
current_syllable = ''
consonant_cluster = ''
# Handle common prefixes
common_prefixes = ['re', 'pre', 'un', 'in', 'im', 'dis', 'mis', 'non', 'sub', 'inter', 'ex']
for prefix in common_prefixes:
if word.startswith(prefix) and len(word) > len(prefix) + 1:
syllables.append(prefix)
word = word[len(prefix):]
break
# Handle common suffixes
common_suffixes = ['ing', 'ed', 'er', 'est', 'ly', 'ful', 'ness', 'less', 'ment', 'able', 'ible']
for suffix in common_suffixes:
if word.endswith(suffix) and len(word) > len(suffix) + 1:
suffix_syllable = suffix
word = word[:-len(suffix)]
syllables.append(word)
syllables.append(suffix_syllable)
return '-'.join(syllables)
# Process the word character by character
i = 0
while i < len(word):
char = word[i]
# If we encounter a vowel
if char in vowels:
# Start or add to a syllable
if consonant_cluster:
# For consonant clusters, we generally add one consonant to the current syllable
# and move the rest to the next syllable
if len(consonant_cluster) > 1:
if current_syllable: # If we already have a syllable started
current_syllable += consonant_cluster[0]
syllables.append(current_syllable)
current_syllable = consonant_cluster[1:] + char
else: # For starting consonant clusters
current_syllable = consonant_cluster + char
else: # Single consonant
current_syllable += consonant_cluster + char
consonant_cluster = ''
else:
current_syllable += char
# Check for vowel pairs that should stay together
if i < len(word) - 1 and word[i+1] in vowels:
vowel_pairs = ['ea', 'ee', 'oo', 'ou', 'ie', 'ai', 'oa']
if word[i:i+2] in vowel_pairs:
current_syllable += word[i+1]
i += 1 # Skip the next vowel since we've added it
else: # Consonant
if current_syllable: # If we have an open syllable
if i < len(word) - 1 and word[i+1] not in vowels: # Consonant cluster
consonant_cluster += char
else: # Single consonant followed by vowel
current_syllable += char
else: # Starting with consonant or building consonant cluster
consonant_cluster += char
# Handle end of word or ready to break syllable
if i == len(word) - 1 or (char in vowels and i < len(word) - 1 and word[i+1] not in vowels):
if current_syllable:
syllables.append(current_syllable)
current_syllable = ''
i += 1
# Add any remaining parts
if consonant_cluster:
if syllables:
syllables[-1] += consonant_cluster
else:
syllables.append(consonant_cluster)
if current_syllable:
syllables.append(current_syllable)
# Special case handling
result = '-'.join(syllables) if syllables else word
# If we ended up with no breaks, provide a simpler approach
if result == word and len(word) > 3:
# Simple fallback: break after every other letter
syllables = [word[i:i+2] for i in range(0, len(word), 2)]
result = '-'.join(syllables)
return result
@tool
def generate_targeted_story(previous_feedback: str, name: str, grade: str, missed_words: list = None) -> str:
"""
Generate a new story that specifically targets words the student struggled with.
Agentic story generation based on learning gaps.
Args:
previous_feedback (str): Previous reading feedback
name (str): Student's name
grade (str): Student's grade level
missed_words (list): Words the student had trouble with
Returns:
str: New targeted story for practice
"""
grade_num = int(''.join(filter(str.isdigit, grade)) or "3")
age = grade_num + 5
# Dynamically determine story parameters based on grade - match the same criteria as main story generation
if grade_num <= 2:
# Grades 1-2: Very simple stories
story_length = "2-3 short sentences"
vocabulary_level = "very simple words (mostly 1-2 syllables)"
sentence_structure = "short, simple sentences"
complexity = "basic concepts"
reading_level = "beginner"
elif grade_num <= 4:
# Grades 3-4: Intermediate stories
story_length = "1-2 short paragraphs"
vocabulary_level = "age-appropriate words with some longer words"
sentence_structure = "mix of simple and compound sentences"
complexity = "intermediate concepts with some detail"
reading_level = "intermediate"
else:
# Grades 5-6: More advanced stories
story_length = "2-3 paragraphs"
vocabulary_level = "varied vocabulary including descriptive words"
sentence_structure = "complex sentences with descriptive language"
complexity = "detailed concepts and explanations"
reading_level = "advanced elementary"
# Extract difficulty level from previous feedback
if "AMAZING" in previous_feedback or "accuracy: 9" in previous_feedback:
difficulty_adjustment = "slightly more challenging but still within grade level"
focus_area = "new vocabulary and longer sentences"
elif "GOOD" in previous_feedback or "accuracy: 8" in previous_feedback:
difficulty_adjustment = "similar level with some new words"
focus_area = "reinforcing current skills"
else:
difficulty_adjustment = "slightly simpler but still grade-appropriate"
focus_area = "basic vocabulary and simple sentences"
# Create targeted practice words
if missed_words:
practice_words = missed_words[:5] # Focus on top 5 missed words
word_focus = f"Include and repeat these practice words: {', '.join(practice_words)}"
else:
word_focus = "Focus on common sight words for this grade level"
# Generate adaptive prompt
prompt = f"""
You are an expert reading coach creating a personalized story for {name}, a {age}-year-old in {grade}.
GRADE LEVEL: {grade} ({reading_level} level)
STORY SPECIFICATIONS:
- Length: {story_length}
- Vocabulary: {vocabulary_level}
- Sentence structure: {sentence_structure}
- Complexity: {complexity}
LEARNING ADAPTATION:
- Make this story {difficulty_adjustment}
- Focus on: {focus_area}
- {word_focus}
STORY REQUIREMENTS:
- Feature {name} as the main character
- Include an engaging adventure or discovery theme
- Naturally incorporate the practice words multiple times
- Make it fun and encouraging
- End with {name} feeling proud and accomplished
Create a story that helps {name} practice the words they found challenging while building confidence.
Story:
"""
# Generate targeted story
max_tokens = 300 if grade_num <= 2 else 600 if grade_num <= 4 else 1000
generation_config = genai.GenerationConfig(
temperature=0.7,
max_output_tokens=max_tokens,
top_p=0.9,
)
response = gemini_client.models.generate_content(
model="gemini-2.5-flash",
contents=[prompt],
generation_config=generation_config
)
return response.text.strip()
class SessionManager:
"""Manages student sessions and progress tracking"""
def __init__(self):
self.sessions = {}
self.student_progress = {}
def start_session(self, student_name: str, grade: str) -> str:
"""Start a new reading session for a student"""
session_id = f"{student_name}_{int(time.time())}"
self.sessions[session_id] = {
"student_name": student_name,
"grade": grade,
"start_time": time.time(),
"stories_read": 0,
"total_accuracy": 0,
"feedback_history": []
}
return session_id
def get_session(self, session_id: str) -> dict:
"""Get session data"""
return self.sessions.get(session_id, {})
def update_session(self, session_id: str, accuracy: float, feedback: str):
"""Update session with reading results"""
if session_id in self.sessions:
session = self.sessions[session_id]
session["stories_read"] += 1
session["total_accuracy"] += accuracy
session["feedback_history"].append({
"timestamp": time.time(),
"accuracy": accuracy,
"feedback": feedback
})
class ReadingCoachAgent:
"""
Main agent class that provides the interface for the reading coach system.
Wraps the individual tool functions and manages student sessions.
"""
def __init__(self):
self.session_manager = SessionManager()
self.current_session = None
self.current_story = ""
self.student_info = {"name": "", "grade": ""}
def generate_story_for_student(self, name: str, grade: str, topic: str) -> str:
"""Generate a story for a student and start/update session"""
# Store student info
self.student_info = {"name": name, "grade": grade}
# Start or update session
session_id = self.session_manager.start_session(name, grade)
self.current_session = session_id
# Generate story using the tool function
story = generate_story(name, grade, topic)
self.current_story = story
return story
def create_audio_from_story(self, story: str) -> str:
"""Convert story to audio using TTS"""
return text_to_speech(story)
def analyze_student_reading(self, audio_path: str) -> tuple:
"""Analyze student's reading and provide feedback"""
# Transcribe the audio
transcribed_text = transcribe_audio(audio_path)
# Check if the transcribed text is an error message or empty
if transcribed_text.startswith("Error:") or transcribed_text.startswith("I couldn't hear") or len(transcribed_text.strip()) < 3:
# Return a helpful message instead of giving feedback with accuracy points
error_feedback = "⚠️ I couldn't hear your reading clearly. Please try again and make sure to:\n"
error_feedback += "• Speak clearly and at a normal pace\n"
error_feedback += "• Make sure your microphone is working properly\n"
error_feedback += "• Try reading in a quieter environment\n"
error_feedback += "• Read the complete story from beginning to end\n\n"
error_feedback += "Reading accuracy: 0.0%"
return transcribed_text, error_feedback, 0.0
# Compare with original story and get feedback
feedback = compare_texts_for_feedback(self.current_story, transcribed_text)
# Extract accuracy from feedback
accuracy = self._extract_accuracy_from_feedback(feedback)
# Update session if we have one
if self.current_session:
self.session_manager.update_session(self.current_session, accuracy, feedback)
return transcribed_text, feedback, accuracy
def generate_new_passage(self, topic: str) -> str:
"""Generate a new passage with the current student info"""
if not self.student_info["name"] or not self.student_info["grade"]:
raise ValueError("No active session. Please start a new session first.")
# Generate new story
story = generate_story(self.student_info["name"], self.student_info["grade"], topic)
self.current_story = story
return story
def generate_practice_story(self, name: str, grade: str) -> str:
"""Generate a new targeted practice story based on previous feedback"""
if not self.student_info.get("name") or not self.student_info.get("grade"):
# Use provided parameters if student info is not available
name = name or "Student"
grade = grade or "Grade 3"
else:
name = self.student_info["name"]
grade = self.student_info["grade"]
# Get the last feedback to personalize the practice story
last_feedback = ""
missed_words_list = []
# Extract missed words from feedback if available
if self.current_session:
session_data = self.session_manager.get_session(self.current_session)
if session_data and "feedback_history" in session_data and session_data["feedback_history"]:
last_feedback = session_data["feedback_history"][-1]["feedback"]
# Extract missed words from the feedback
import re
if "PRACTICE THESE WORDS:" in last_feedback:
# Find all words that appear after bullet points
matches = re.findall(r'• ([A-Z]+)', last_feedback)
missed_words_list = [word.lower() for word in matches]
# Generate a new practice story using the targeted story function
practice_story = generate_targeted_story(last_feedback, name, grade, missed_words_list)
self.current_story = practice_story
return practice_story
def clear_session(self):
"""Clear current session"""
self.current_session = None
self.current_story = ""
self.student_info = {"name": "", "grade": ""}
def reset_all_data(self):
"""Reset all current session state but keep tracked sessions."""
self.clear_session()
def _extract_accuracy_from_feedback(self, feedback: str) -> float:
"""Extract accuracy percentage from feedback text"""
import re
# Look for "Reading accuracy: XX.X%" pattern in feedback
match = re.search(r'Reading accuracy:\s*(\d+\.?\d*)%', feedback)
if match:
return float(match.group(1))
return 0.0
def _extract_missed_words_from_feedback(feedback: str) -> list:
"""
Extract missed words from feedback text.
Args:
feedback (str): Feedback text containing missed words
Returns:
list: List of missed words
"""
import re
missed_words = []
# Check if feedback contains practice words section
if "PRACTICE THESE WORDS:" in feedback:
# Extract the section with practice words
practice_section = feedback.split("PRACTICE THESE WORDS:")[1].split("\n")[1:]
# Extract words that appear after bullet points
for line in practice_section:
if "•" in line and "-" in line:
# Extract word before the dash
match = re.search(r'• ([A-Z]+) -', line)
if match:
missed_words.append(match.group(1).lower())
# If we also have mispronounced words, add them too
if "PRONUNCIATION PRACTICE:" in feedback:
pronun_section = feedback.split("PRONUNCIATION PRACTICE:")[1].split("\n")[1:]
for line in pronun_section:
if "•" in line and "(you said" in line:
match = re.search(r'• ([A-Z]+) \(you said', line)
if match:
missed_words.append(match.group(1).lower())
return missed_words