File size: 98,909 Bytes
3b1d3e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# HIVE 🐝 FULL MERGED ALL-IN-ONE **OPTIMIZED**
# Offline-first + Online updates + Auto Wi-Fi + RBAC + Multilingual Voice (ASR/TTS + Phonics)
# + Internal Optimization Stack (Change Manager: propose ➡️ sandbox ➡️ A/B test ➡️ apply/rollback with Owner policy)
# Upload this single file and requirements.txt to a Hugging Face Space (or run locally).
# - python app.py
# --- BEGIN MEMORY MANIFEST (auto-updated) ---
# (This block is auto-written by Hive to record what datasets/files
# have already been converted into memory (curves). Do not edit by hand.)
MEMORY_MANIFEST = {
"updated_ts": 0,
"datasets_done": [],
"vectors_total": 0,
"notes": "Set HIVE_ALLOW_SELF_WRITE_MANIFEST=0 to stop auto-updates."
}
# --- END MEMORY MANIFEST ---
import os, sys, re, json, time, shutil, tempfile, subprocess, platform, socket, threading, importlib, hashlib, unicodedata, urllib.request, base64
from dataclasses import dataclass
from typing import Optional, List, Dict, Tuple
# ----------- light bootstrap (safe) -----------
def _ensure(pkgs: List[str]):
for p in pkgs: # type: ignore
mod = p.split("==")[0].split(">=")[0].split("<=")[0].split("[")[0]
try:
importlib.import_module(mod)
except Exception:
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", p])
except Exception:
pass
_ensure(["numpy>=1.24.0","psutil>=5.9.0","requests>=2.31.0","gradio>=4.44.0","sentence-transformers>=3.0.0","faiss-cpu>=1.8.0",
"transformers>=4.44.0","accelerate>=0.33.0","datasets>=2.21.0","soundfile>=0.12.1","faster-whisper>=1.0.0","langid>=1.1.6",
"piper-tts>=1.2.0","g2p_en>=2.1.0","librosa>=0.10.1","scikit-learn>=1.1.0","feedparser>=6.0.11","duckduckgo_search>=6.2.10",
"keyring>=24.3.1"])
import numpy as np, psutil, requests, feedparser, langid, librosa, gradio as gr, soundfile as sf
from sentence_transformers import SentenceTransformer
from duckduckgo_search import DDGS
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from faster_whisper import WhisperModel
from piper.voice import PiperVoice
from g2p_en import G2p
from sklearn.metrics.pairwise import cosine_similarity
try:
import torch
except Exception:
torch=None
try:
import faiss
except Exception:
subprocess.check_call([sys.executable,"-m","pip","install","--upgrade","faiss-cpu>=1.8.0"])
import faiss
# Optional vision
try:
import cv2; _HAVE_CV=True
except Exception:
_HAVE_CV=False
try:
from PIL import Image
import pytesseract; _HAVE_TESS=True and _HAVE_CV
except Exception:
_HAVE_TESS=False
try:
import keyring
except Exception:
keyring=None
# ----------------------- config -----------------------
def ENV(name, default=None, cast=str):
v=os.getenv(name, default)
if v is None: return None
if cast is bool: return str(v).lower() in ("1","true","yes","on")
if cast is int:
try: return int(v) # type: ignore
except (ValueError, TypeError): return int(float(v))
return v
CFG={
# auto-archive memory to curves.tar.gz
"HIVE_AUTO_ARCHIVE": ENV("HIVE_AUTO_ARCHIVE", "1", bool),
"HIVE_AUTO_ARCHIVE_MODE": ENV("HIVE_AUTO_ARCHIVE_MODE", "per_chain", str), # per_chain | per_dataset
"HIVE_ARCHIVE_PATH": ENV("HIVE_ARCHIVE_PATH", "curves.tar.gz", str),
# staged ingestion chaining (auto-run multiple stages this boot)
"HIVE_INGEST_CHAIN": ENV("HIVE_INGEST_CHAIN", "1", bool),
"HIVE_INGEST_CHAIN_MAX": ENV("HIVE_INGEST_CHAIN_MAX", "2", int), # max stages per boot
# staged ingestion controls
"HIVE_INGEST_STAGED": ENV("HIVE_INGEST_STAGED", "1", bool),
"HIVE_INGEST_STAGE_SIZE": ENV("HIVE_INGEST_STAGE_SIZE", "3", int),
"HIVE_INGEST_MIN_FREE_GB": ENV("HIVE_INGEST_MIN_FREE_GB", "8", int),
"HIVE_INGEST_NEXT": ENV("HIVE_INGEST_NEXT", "0", bool),
# self-edit manifest controls
"HIVE_ALLOW_SELF_WRITE_MANIFEST": ENV("HIVE_ALLOW_SELF_WRITE_MANIFEST", "1", bool),
"HIVE_SELF_WRITE_FILE": ENV("HIVE_SELF_WRITE_FILE", "", str),
# memory auto-restore controls (admin memory)
"CURVES_AUTO_RESTORE": ENV("HIVE_CURVES_AUTO_RESTORE", "1", bool),
"CURVES_ARCHIVE_LOCAL": ENV("HIVE_CURVES_ARCHIVE_LOCAL", "curves.tar.gz", str),
"CURVES_ARCHIVE_URL": ENV("HIVE_CURVES_ARCHIVE_URL", "", str),
"CURVES_HF_DATASET": ENV("HIVE_CURVES_HF_DATASET", "", str),
"CURVES_HF_SUBPATH": ENV("HIVE_CURVES_HF_SUBPATH", "", str),
"HF_READ_TOKEN": ENV("HF_READ_TOKEN", "", str),
# memory directory alias
"HIVE_HOME": ENV("HIVE_HOME", "/home/hive/hive_data" if os.path.exists("/home/hive") else "./hive_data"), # type: ignore
"CURVE_DIR": os.path.join(ENV("HIVE_HOME", "/home/hive/hive_data" if os.path.exists("/home/hive") else "./hive_data"), "curves"), # type: ignore
"STATE_DIR": os.path.join(ENV("HIVE_HOME", "/home/hive/hive_data" if os.path.exists("/home/hive") else "./hive_data"), "system"), # type: ignore
"LAUNCH_UI": ENV("HIVE_LAUNCH_UI","1",bool),
"LLM_AUTOSIZE": ENV("HIVE_LLM_AUTOSIZE", "1", bool), # type: ignore
"LLM_MAX_VRAM_GB": ENV("HIVE_LLM_MAX_VRAM_GB","0", int),
"MODEL_OVERRIDE": ENV("HIVE_MODEL_ID",""),
"CTX_TOKENS": ENV("HIVE_CTX_TOKENS","2048",int),
"OWNER_NAME": ENV("HIVE_OWNER_USER","Rose"),
"OWNER_PASS": ENV("HIVE_OWNER_PASS","Fehr2008"),
"OWNER_SECOND": ENV("HIVE_OWNER_SECOND","Paulbear01"),
"AGENT_NAME": ENV("HIVE_AGENT_NAME","Hive"),
"NO_PROFANITY": ENV("HIVE_NO_PROFANITY","1",bool),
"ASR_SIZE": ENV("HIVE_ASR_SIZE","small"),
"TTS_LANG": ENV("HIVE_TTS_LANG","en"),
"BOOTSTRAP_INGEST": ENV("HIVE_BOOTSTRAP_INGEST","1",bool),
"FORCE_REINGEST": ENV("HIVE_FORCE_REINGEST","0",bool),
"INGEST_SOURCES": ENV("HIVE_INGEST_SOURCES",""),
"ONLINE_ENABLE": ENV("HIVE_ONLINE_ENABLE","1",bool),
"ONLINE_AUTO": ENV("HIVE_ONLINE_AUTO","0",bool),
"ONLINE_SOURCES": ENV("HIVE_ONLINE_SOURCES","https://hnrss.org/frontpage,https://rss.nytimes.com/services/xml/rss/nyt/World.xml"),
"ONLINE_TIMEOUT": ENV("HIVE_ONLINE_TIMEOUT","8",int),
"ONLINE_MAX_RESULTS": ENV("HIVE_ONLINE_MAX_RESULTS","5",int),
"ONLINE_TRIGGER": ENV("HIVE_ONLINE_TRIGGER","auto",str),
# bounded self governance
"HIVE_USE_HF_INFERENCE": ENV("HIVE_USE_HF_INFERENCE","0",bool),
"HIVE_HF_ENDPOINT": ENV("HIVE_HF_ENDPOINT","",str),
"ALLOW_SELF_REBOOT": ENV("HIVE_ALLOW_SELF_REBOOT","1",bool),
"ALLOW_RUNTIME_HOTPATCH": ENV("HIVE_ALLOW_RUNTIME_HOTPATCH", "1", bool),
"AUTO_SELF_OPTIMIZE": ENV("HIVE_AUTO_SELF_OPTIMIZE","1",bool),
# internal optimization with sandbox + A/B (Owner policy)
"OPT_ENABLE": ENV("HIVE_OPT_ENABLE","1",bool),
"OPT_AUTO_APPLY": ENV("HIVE_OPT_AUTO_APPLY","0",bool), # OWNER MAY SET TO 1
"OPT_PKG_ALLOWLIST": ENV("HIVE_OPT_PKG_ALLOWLIST","transformers,accelerate,datasets,sentence-transformers,faiss-cpu,duckduckgo_search,feedparser,requests,gradio").split(","),
"OPT_MODEL_ALLOWLIST": ENV("HIVE_OPT_MODEL_ALLOWLIST","meta-llama/Meta-Llama-3.1-8B-Instruct,meta-llama/Meta-Llama-3.1-70B-Instruct,TinyLlama/TinyLlama-1.1B-Chat-v1.0").split(","),
"OPT_THRESH_LATENCY_MS": ENV("HIVE_OPT_THRESH_LATENCY_MS","0",int),
"OPT_THRESH_TOKS_PER_S": ENV("HIVE_OPT_THRESH_TOKS_PER_S","0",float),
"OPT_THRESH_QUALITY": ENV("HIVE_OPT_THRESH_QUALITY","0.02",float),
"OPT_SANDBOX_TIMEOUT": ENV("HIVE_OPT_SANDBOX_TIMEOUT","180",int),
}
# Create all necessary directories based on the new specification
HIVE_HOME = CFG["HIVE_HOME"] # type: ignore
DIRS_TO_CREATE = [
CFG["CURVE_DIR"], CFG["STATE_DIR"], # type: ignore
os.path.join(HIVE_HOME, "knowledge", "chunks"), os.path.join(HIVE_HOME, "users", "conversations"), # type: ignore
os.path.join(HIVE_HOME, "voice", "voiceprints"), os.path.join(HIVE_HOME, "admin", "logs"), # type: ignore
os.path.join(HIVE_HOME, "packages") # type: ignore
] # type: ignore
for d in DIRS_TO_CREATE: os.makedirs(d, exist_ok=True)
OVERLAY_DIR = os.path.join(CFG["STATE_DIR"], "runtime_overlay")
RUNTIME_OVERRIDES = os.path.join(CFG["STATE_DIR"], "runtime_overrides.json")
OPT_DIR = os.path.join(CFG["STATE_DIR"], "opt")
OPT_PROPOSALS = os.path.join(OPT_DIR, "proposals.jsonl")
OPT_RESULTS = os.path.join(OPT_DIR, "results.jsonl")
for p in (OVERLAY_DIR, OPT_DIR):
os.makedirs(p, exist_ok=True)
# ----------------- sensing / model pick -----------------
def _has_gpu_env()->bool:
accel=os.getenv("SPACE_ACCELERATOR","").lower()
if accel in ("t4","a10","a100","l4","l40","h100"): return True
try: return torch is not None and torch.cuda.is_available()
except Exception: return False
def probe_caps() -> Dict[str, any]: # type: ignore
"""
Implements the Environment Detector and Capability Profiler.
Detects hardware and returns a profile for adaptive behavior.
"""
total_ram_gb = psutil.virtual_memory().total / (1024**3)
available_ram_gb = psutil.virtual_memory().available / (1024**3)
is_pi = 'raspberrypi' in platform.machine().lower()
profile = {
"device_type": "raspberry_pi" if is_pi else "generic_linux",
"arch": platform.machine(),
"total_ram_gb": round(total_ram_gb, 1),
"available_ram_gb": round(available_ram_gb, 1),
"gpu": _has_gpu_env(),
"is_low_memory": total_ram_gb < 6, # Threshold for Pi-like devices
"max_docs": 70000 if total_ram_gb > 16 else (50000 if total_ram_gb > 8 else 12000),
"batch": 512 if total_ram_gb > 16 else (256 if total_ram_gb > 8 else 64)
}
return profile
CANDIDATES=[
("TinyLlama/TinyLlama-1.1B-Chat-v1.0", 0),
("meta-llama/Meta-Llama-3.1-8B-Instruct",12),
("meta-llama/Meta-Llama-3.1-70B-Instruct",100)
]
def pick_model(caps: Dict[str, any]) -> Tuple[str, dict]: # type: ignore
if CFG["MODEL_OVERRIDE"]:
return CFG["MODEL_OVERRIDE"], {"device":"cuda" if _has_gpu_env() else "cpu"}
max_vram=CFG["LLM_MAX_VRAM_GB"]
if caps["gpu"]:
for mid,need in reversed(CANDIDATES):
if need and (max_vram==0 or need<=max_vram):
return mid, {"device":"cuda"} # type: ignore
else:
ram=caps["total_ram_gb"]
for mid,need in reversed(CANDIDATES):
if need==0 and ram>=6: return mid, {"device":"cpu"}
return "TinyLlama/TinyLlama-1.1B-Chat-v1.0", {"device":"cpu"}
# ----------------- embeddings / curves -----------------
_EMB_ID=os.getenv("HIVE_EMB_ID","sentence-transformers/all-MiniLM-L6-v2")
class GEC:
def __init__(self):
device = "cuda" if _has_gpu_env() else "cpu"
self.model=SentenceTransformer(_EMB_ID).to(device)
def encode(self, texts: List[str]): return self.model.encode(texts, normalize_embeddings=True)
class CurveStore:
def __init__(self, d):
self.dir=d; os.makedirs(d, exist_ok=True)
self.idx_path=os.path.join(d,"faiss.index")
self.meta_path=os.path.join(d,"meta.jsonl")
self.dim=384; self.gec=GEC()
self.index=faiss.read_index(self.idx_path) if os.path.exists(self.idx_path) else faiss.IndexFlatIP(self.dim)
def add_texts(self, docs:List[str], metas:List[Dict]):
if not docs: return
vecs=np.asarray(self.gec.encode(docs), dtype="float32")
self.index.add(vecs)
with open(self.meta_path,"a",encoding="utf-8") as f:
for m in metas: f.write(json.dumps(m, ensure_ascii=False)+"\n")
faiss.write_index(self.index, self.idx_path)
def search(self, query:str, k:int=6)->List[Dict]:
if self.index.ntotal==0: return []
qv=np.asarray(self.gec.encode([query]), dtype="float32")
D,I=self.index.search(qv,k)
lines=open(self.meta_path,"r",encoding="utf-8").read().splitlines() if os.path.exists(self.meta_path) else []
out=[]
for i in I[0]:
if 0<=i<len(lines):
try: out.append(json.loads(lines[i])) # type: ignore
except json.JSONDecodeError: pass # type: ignore
return out
def search_with_scores(self, query:str, k:int=6):
if self.index.ntotal == 0: return [], []
qv=np.asarray(self.gec.encode([query]), dtype="float32")
D,I=self.index.search(qv,k) # type: ignore
lines=open(self.meta_path,"r",encoding="utf-8").read().splitlines() if os.path.exists(self.meta_path) else []
metas, scores = [], [] # type: ignore
query_len = len(query.split())
for idx, sc in zip(I[0], D[0]):
if 0<=idx<len(lines):
try:
meta = json.loads(lines[idx])
# Penalize long snippets for short queries to avoid irrelevant context.
text_len = len(meta.get("text", "").split())
penalty = 0.0
if query_len < 4 and text_len > 100:
penalty = 0.15 * (min(text_len, 400) / 400) # Penalize up to 0.15
metas.append(meta)
scores.append(float(max(0.0, min(1.0, (sc if sc is not None else 0.0) - penalty)))) # type: ignore
except: pass
return metas, scores
OFFLINE_MARK = os.path.join(CFG["CURVE_DIR"], ".offline_ready")
def _curves_ready(curve_dir:str)->bool:
idx=os.path.join(curve_dir,"faiss.index")
if os.path.exists(OFFLINE_MARK):
try: return json.load(open(OFFLINE_MARK)).get("ok",True)
except Exception: return True
if os.path.exists(idx):
try: return faiss.read_index(idx).ntotal>0
except Exception: return False
return False
def _mark_offline_ready():
try: json.dump({"ok":True,"ts":time.time()}, open(OFFLINE_MARK,"w",encoding="utf-8"))
except Exception: pass
# ----------- HF Datasets bootstrap -----------
DEFAULT_SOURCES=["jhu-clsp/jflue","bea2019st/wi_locness","fce-m2109/mascorpus","rajpurkar/squad_v2",
"OpenRL/daily_dialog","tetti/spelling-dataset-extended","Helsinki-NLP/opus-100","facebook/flores",
"HuggingFaceH4/no_robots","bigscience/xP3","allenai/sciq","allenai/c4",
"mozilla-foundation/common_voice_17_0","bene-ges/en_cmudict","openslr/librispeech_asr","conceptnet5/conceptnet5","grammarly/coedit"]
def _iter_text(dataset_name:str, split="train"):
from datasets import load_dataset
ds=load_dataset(dataset_name, split=split, streaming=True)
for ex in ds:
text = ex.get("text") or ex.get("sentence") or ex.get("content") or ex.get("question")
if not text:
if "translation" in ex and isinstance(ex["translation"], dict):
tdict=ex["translation"]; text=" | ".join([f"{k}:{v}" for k,v in tdict.items() if isinstance(v,str)])
else:
text=str(ex)
yield {"text": str(text)}
def _plan_order(srcs: List[str])->List[str]:
first=["jhu-clsp/jflue","bea2019st/wi_locness","fce-m2109/mascorpus","rajpurkar/squad_v2","OpenRL/daily_dialog","tetti/spelling-dataset-extended"]
ordered=[s for s in first if s in srcs]
for s in srcs:
if s not in ordered: ordered.append(s)
return ordered
class LibrarianCurve:
def __init__(self, store): self.store=store
def ingest_pairs(self, texts, metas, scope):
metas_scoped=[]
for m,t in zip(metas,texts):
m2=dict(m); m2["scope"]=scope; m2["text"]=t[:500]
metas_scoped.append(m2)
self.store.add_texts(texts, metas_scoped)
def retrieve_scoped_with_scores(self, query, effective_role, caller_id, k=6):
items, scores = self.store.search_with_scores(query, k=k*4)
if effective_role=="owner": return items[:k], scores[:k]
allowed={"general"}
if caller_id: allowed.add(f"user:{caller_id}")
filt_i,filt_s=[],[]
for it,sc in zip(items, scores):
if it.get("scope","general") in allowed:
filt_i.append(it); filt_s.append(sc)
if len(filt_i) >= k: break
return filt_i, filt_s
def ingest_all(curve_dir:str, sources: Optional[List[str]]=None, scope="general"):
caps=probe_caps()
store=CurveStore(curve_dir); lib=LibrarianCurve(store)
os.makedirs(curve_dir, exist_ok=True)
logf=os.path.join(curve_dir,"ingest_log.jsonl")
count_total=0; sources=sources or DEFAULT_SOURCES
for ds in _plan_order(sources):
count=0; bt,bm=[],[]
try:
for rec in _iter_text(ds):
txt=(rec.get("text") or "").strip()
if not txt: continue
bt.append(txt); bm.append({"dataset":ds,"text":txt[:500]})
if len(bt)>=caps["batch"]:
lib.ingest_pairs(bt,bm,scope); count+=len(bt); count_total+=len(bt); bt,bm=[],[]
if count>=caps["max_docs"]: break
if bt: lib.ingest_pairs(bt,bm,scope); count+=len(bt); count_total+=len(bt); bt,bm=[],[]
with open(logf,"a",encoding="utf-8") as f: f.write(json.dumps({"dataset":ds,"ingested":count})+"\n")
except Exception as e:
with open(logf,"a",encoding="utf-8") as f: f.write(json.dumps({"dataset":ds,"error":str(e)})+"\n")
return count_total
# ----------- live search + RSS ➡️ curves -----------
ONLINE_DB=os.path.join(CFG["STATE_DIR"],"online_seen.json")
def _load_json(path, default):
if os.path.exists(path):
try: return json.load(open(path,"r",encoding="utf-8"))
except Exception: return default
return default
def _save_json(path, data): json.dump(data, open(path,"w",encoding="utf-8"), indent=2)
def online_available(timeout:int)->bool:
try:
requests.get("https://huggingface.co", timeout=timeout)
return True
except Exception:
return False
def _hash(s:str)->str:
return hashlib.sha1(s.encode("utf-8","ignore")).hexdigest()
def fetch_rss(urls:List[str], timeout:int=8, limit:int=50)->List[Dict]:
items=[]
for u in urls:
try:
f=feedparser.parse(u) # type: ignore
for e in f.entries[:limit]:
items.append({"title":e.get("title",""),"link":e.get("link",""),"summary":e.get("summary") or e.get("description",""),"published":e.get("published") or e.get("updated",""),"source":u})
except Exception as e:
print(f"Warning: Failed to fetch or parse RSS feed from {u}. Error: {e}")
return items
def web_search_snippets(query:str, max_results:int=5, timeout:int=8)->list:
out=[]
try:
with DDGS(timeout=timeout) as ddgs:
for r in ddgs.text(query, max_results=max_results):
if r and r.get("body"):
out.append({"title":r.get("title",""),"href":r.get("href",""),"body":r.get("body","")})
except Exception as e: # type: ignore
print(f"Warning: DuckDuckGo search failed for query '{query}'. Error: {e}")
return out
# ----------- RBAC / users / lockouts -----------
USERS_DB=os.path.join(CFG["STATE_DIR"],"users.json")
LOCKS_DB=os.path.join(CFG["STATE_DIR"],"lockouts.json")
VOICES_DB=os.path.join(CFG["STATE_DIR"],"voices.json")
ADAPT_DB=os.path.join(CFG["STATE_DIR"],"speech_adapt.json")
def _init_users():
d={"owner":{"id":"owner:1","name":CFG["OWNER_NAME"],"role":"owner","pass":CFG["OWNER_PASS"],"second":CFG["OWNER_SECOND"],"prefs":{"activation_names":[CFG["AGENT_NAME"]],"language":"en"}},
"admins_super":[],"admins_general":[],"users":[]}
_save_json(USERS_DB,d); return d
def _load_users():
d=_load_json(USERS_DB, None); return d if d else _init_users()
def _find_user(d, name_or_id):
pools=[("owner",[d.get("owner")]),("admin_super",d["admins_super"]),("admin_general",d["admins_general"]),("user",d["users"])]
for role,pool in pools:
for u in pool or []:
if u and (u.get("id")==name_or_id or u.get("name")==name_or_id): return u, role
return None, None
PERMS={
"owner":{"can_add":["admin_super","admin_general","user"],"can_remove":["admin_super","admin_general","user"],
"can_edit_role_of":["admin_super","admin_general","user"],"can_edit_profile_of":["owner","admin_super","admin_general","user"],
"can_view_scopes":"all","maintenance":"full","code_edit":"approve_and_edit"},
"admin_super":{"can_add":["admin_general","user"],"can_remove":["admin_general","user"],
"can_edit_role_of":["admin_general","user"],"can_edit_profile_of":["admin_general","user"],
"can_view_scopes":"self_only","maintenance":"advanced","code_edit":"suggest_only"},
"admin_general":{"can_add":["user"],"can_remove":["user"],"can_edit_role_of":["user"],"can_edit_profile_of":["user"],
"can_view_scopes":"self_only","maintenance":"basic","code_edit":"suggest_only"},
"user":{"can_add":[],"can_remove":[],"can_edit_role_of":[],"can_edit_profile_of":["user"],
"can_view_scopes":"self_only","maintenance":"none","code_edit":"none"},
"guest":{"can_add":[],"can_remove":[],"can_edit_role_of":[],"can_edit_profile_of":[],
"can_view_scopes":"self_only","maintenance":"none","code_edit":"none"},
}
def attempt_login(name_or_id:str, password:str="", second:Optional[str]=None):
d=_load_users(); locks=_load_json(LOCKS_DB,{ })
def lock_fail(lid, msg):
st=locks.get(lid, {"fails":0,"until":0}); st["fails"]=st.get("fails",0)+1
dur=180 if st["fails"]>=3 else 0; st["until"]=time.time()+dur if dur else 0
locks[lid]=st; _save_json(LOCKS_DB,locks); return False, msg
u,_=_find_user(d, name_or_id)
if not u: return False, "Profile not found."
role=u.get("role","user"); lid=str(u.get("id", u.get("name"))); now=time.time()
st=locks.get(lid, {"fails":0,"until":0})
if now < st.get("until",0): return False, f"Locked; try again in ~{int(st['until']-now)}s."
if role in ("admin_general","admin_super","owner"):
if role=="owner":
if password!=u.get("pass") or (u.get("second") and second!=u.get("second")):
return lock_fail(lid, "Owner credentials incorrect.")
else:
if password!=u.get("pass"): return lock_fail(lid, "Admin password incorrect.")
locks[lid]={"fails":0,"until":0}; _save_json(LOCKS_DB,locks)
return True, f"Welcome, {u.get('name')} ({role})."
# ----------- voice: ASR/TTS/phonics -----------
G2P = G2p()
ASR_MODELS={"tiny":"tiny","base":"base","small":"small","medium":"medium","large-v3":"large-v3"}
def _asr_model_name(): return ASR_MODELS.get(CFG["ASR_SIZE"],"small")
_ASR=None
def get_asr():
global _ASR
if _ASR is not None: return _ASR
size=_asr_model_name(); device="cuda" if (_has_gpu_env()) else "cpu"
compute_type="float16" if device=="cuda" else "int8"
_ASR=WhisperModel(size, device=device, compute_type=compute_type); return _ASR
PIPER_MODELS={
"en": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/en_US-amy-low.onnx",
"https://github.com/rhasspy/piper/releases/download/v0.0.2/en_US-amy-low.onnx.json"),
"es": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/es_ES-davefx-medium.onnx",
"https://github.com/rhasspy/piper/releases/download/v0.0.2/es_ES-davefx-medium.onnx.json"),
"fr": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/fr_FR-gilles-medium.onnx",
"https://github.com/rhasspy/piper/releases/download/v0.0.2/fr_FR-gilles-medium.onnx.json"),
"de": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/de_DE-thorsten-low.onnx",
"https://github.com/rhasspy/piper/releases/download/v0.0.2/de_DE-thorsten-low.onnx.json"),
"zh": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/zh_CN-huayan-low.onnx",
"https://github.com/rhasspy/piper/releases/download/v0.0.2/zh_CN-huayan-low.onnx.json"),
}
def _download(url,dst, timeout=30): # type: ignore
if os.path.exists(dst): return dst
os.makedirs(os.path.dirname(dst),exist_ok=True); urllib.request.urlretrieve(url,dst); return dst # TODO: add timeout
_TTS_CACHE={}
def get_tts(lang: str = "en") -> PiperVoice: # type: ignore
lang=lang if lang in PIPER_MODELS else "en"
if lang in _TTS_CACHE: return _TTS_CACHE[lang]
mu,cu=PIPER_MODELS[lang]; m=_download(mu,f"./models/piper/{os.path.basename(mu)}"); c=_download(cu,f"./models/piper/{os.path.basename(cu)}")
v=PiperVoice.load(m,c); _TTS_CACHE[lang]=v; return v
def _embed_mfcc(path)->np.ndarray:
y, sr = librosa.load(path, sr=16000)
mf=librosa.feature.mfcc(y=y, sr=sr, n_mfcc=20)
return mf.mean(axis=1)
def enroll_voice(uid:str, path:str) -> bool:
db=_load_json(VOICES_DB, {}); db[uid]=_embed_mfcc(path).astype(float).tolist(); _save_json(VOICES_DB, db); return True
def identify_voice(path:str, threshold:float=0.70) -> Optional[str]:
db=_load_json(VOICES_DB, {});
if not db: return None
emb=_embed_mfcc(path).reshape(1,-1)
keys=list(db.keys()); mats=np.array([db[k] for k in keys])
sims=cosine_similarity(emb, mats)[0]; i=int(np.argmax(sims)); return keys[i] if sims[i]>=threshold else None
_BASIC={'a':'a as in apple /æ/','e':'e as in elephant /ɛ/','i':'i as in igloo /ɪ/','o':'o as in octopus /ɒ/','u':'u as in umbrella /ʌ/',
'c':'c as in cat /k/ (before e/i/y often /s/)','g':'g as in goat /g/ (before e/i/y often soft /dʒ/)','y':'y as in yellow /j/ or happy /i/'}
def phonics(word:str)->str:
toks=G2P(word); phones=[t for t in toks if re.match(r"[A-Z]+[0-2]?$", t)]
hints=[];
for ch in word.lower():
if ch in _BASIC and _BASIC[ch] not in hints: hints.append(_BASIC[ch])
return f"Phonemes: {' '.join(phones)} | Hints: {('; '.join(hints)) if hints else '🐝'}"
def lid_chunk(text:str, min_len:int=12)->List[Tuple[str,str]]:
parts=re.split(r"([.!?;\u2026\u2028\u2029])+\s{2,}|", text)
chunks=[]; buf=""
for p in parts:
if not p: continue
buf+=p
if len(buf)>=min_len or re.match(r"[.!?;\u2026\u2028\u2029]", p):
lang,_=langid.classify(buf.strip()); chunks.append((buf.strip(), lang)); buf=""
if buf.strip():
lang,_=langid.classify(buf.strip()); chunks.append((buf.strip(), lang))
return chunks
def asr_transcribe(path:str, uid: Optional[str], forced_lang: Optional[str]=None)->str:
model=get_asr()
prior=_load_json(ADAPT_DB,{}).get(uid or "guest",{}).get("lang_prior")
language=forced_lang or prior or None
segs, info = model.transcribe(path, language=language, beam_size=5, vad_filter=True)
text=" ".join([s.text for s in segs]) if segs else ""
if not forced_lang and text.strip():
lid,_=langid.classify(text); prof=_load_json(ADAPT_DB,{}); p=prof.get(uid or "guest",{}); p["lang_prior"]=lid; prof[uid or "guest"]=p; _save_json(ADAPT_DB,prof)
return text
def synthesize_multilang(text:str, fallback="en")->str:
chunks=lid_chunk(text)
sr=None; mix=None
for ch, lg in chunks or [(text, fallback)]:
lg2=lg if lg in PIPER_MODELS else fallback
v=get_tts(lg2)
aud, _ = v.synthesize(ch)
if sr is None: sr=v.sample_rate
mix = aud if mix is None else np.concatenate([mix,aud])
outp=os.path.join(tempfile.gettempdir(), f"hive_tts_{int(time.time())}.wav")
sf.write(outp, mix if mix is not None else np.zeros(1), sr or 22050, subtype="PCM_16"); return outp
# ----------- compiler / engine -----------
class EngineCurve:
def __init__(self):
self.stats={"runs":0,"ok":0,"latency_ms":[]}
self.router_rules=[]
def choose_route(self, msg:str)->str:
for pat in self.router_rules or []:
if isinstance(pat, re.Pattern) and pat.search(msg):
s=pat.pattern.lower() # type: ignore
if any(k in s for k in ["review", "essay", "feedback"]): return "essay_review"
if any(k in s for k in ["pronounce", "say"]): return "pronounce"
if len(msg.split()) > 50 and any(k in msg.lower() for k in ["review", "essay", "feedback"]):
return "essay_review"
return "tutor" # Default to tutor persona
def run(self, message:str, snippets:List[Dict])->Dict:
t0=time.time(); _route=self.choose_route(message); t1=time.time()
self.stats["runs"]+=1; self.stats["ok"]+=1; self.stats["latency_ms"].append(int((t1-t0)*1000))
return {"ok":True,"route":_route}
# ----------- wifi auto-connect (non-blocking) -----------
NET_STATE_DB=os.path.join(CFG["STATE_DIR"],"wifi_known.json")
def _os_name(): return platform.system().lower()
def _fast_probe(host="8.8.8.8", port=53, timeout=1.5)->bool:
try:
socket.setdefaulttimeout(timeout)
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM); s.connect((host,port)); s.close()
return True
except Exception:
return False
def _http_probe(url="https://huggingface.co", timeout=2.5)->float:
try:
t0=time.time(); r=requests.head(url, timeout=timeout)
if r.status_code<500: return (time.time()-t0)*1000.0
except Exception: pass
return -1.0
def _load_known()->List[dict]:
data=_load_json(NET_STATE_DB, []); out=[]
for d in data:
if isinstance(d,dict) and "ssid" in d:
out.append({"ssid":d["ssid"],"priority":int(d.get("priority",0))})
out.sort(key=lambda x: x.get("priority",0), reverse=True); return out
def _get_saved_password(ssid:str)->Optional[str]:
if keyring:
try: return keyring.get_password("hive_wifi", ssid) or "" # type: ignore
except Exception: return None
return None
def _connect_linux(ssid, password, timeout=12)->Tuple[bool,str]:
try:
cmd=["nmcli","device","wifi","connect",ssid]+(["password",password] if password else [])
p=subprocess.run(cmd, capture_output=True, text=True, timeout=timeout)
return (p.returncode==0), (p.stdout or p.stderr or "").strip()
except Exception as e: return False, f"nmcli error: {e}"
def _connect_windows(ssid, password)->Tuple[bool,str]:
try:
p=subprocess.run(["netsh","wlan","connect","name="+ssid,"ssid="+ssid], capture_output=True, text=True)
if p.returncode==0 and "success" in (p.stdout+p.stderr).lower(): return True,"Connected."
if not password: return False,"No saved password."
xml=f'''<?xml version="1.0"?>
<WLANProfile xmlns="http://www.microsoft.com/networking/WLAN/profile/v1">
<name>{ssid}</name><SSIDConfig><SSID><name>{ssid}</name></SSIDConfig>
<connectionType>ESS</connectionType><connectionMode>auto</connectionMode>
<MSM><security><authEncryption><authentication>WPA2PSK</authentication>
<encryption>AES</encryption><useOneX>false</useOneX></authEncryption>
<sharedKey><keyType>passPhrase</keyType><protected>false</protected>
<keyMaterial>{password}</keyMaterial></sharedKey></security></MSM></WLANProfile>'''
tmp=os.path.join(os.getenv("TEMP","/tmp"), f"wifi_{int(time.time())}.xml"); open(tmp,"w",encoding="utf-8").write(xml)
a=subprocess.run(["netsh","wlan","add","profile","filename="+tmp,"user=all"], capture_output=True, text=True)
if a.returncode!=0: return False, a.stderr or a.stdout or "add profile failed"
c=subprocess.run(["netsh","wlan","connect","name="+ssid,"ssid="+ssid], capture_output=True, text=True)
return (c.returncode==0), (c.stderr or c.stdout or "").strip()
except Exception as e: return False, f"netsh error: {e}"
def _connect_macos(ssid, password)->Tuple[bool,str]:
try:
out=subprocess.check_output(["networksetup","-listallhardwaresports"], stderr=subprocess.DEVNULL).decode("utf-8","ignore")
dev=None
for block in out.split("\n\n"):
if "Wi-Fi" in block or "AirPort" in block:
for l in block.splitlines():
if l.strip().startswith("Device:"): dev=l.split(":",1)[1].strip(); break
if dev: break
if not dev: return False,"Wi-Fi device not found"
cmd=["networksetup","-setairportnetwork",dev, ssid]+([password] if password else [])
p=subprocess.run(cmd, capture_output=True, text=True)
return (p.returncode==0), (p.stderr or p.stdout or "").strip()
except Exception as e: return False, f"networksetup error: {e}"
def _connect_os(ssid,password,timeout=12)->Tuple[bool,str]:
osn=_os_name()
if osn=="linux": return _connect_linux(ssid,password,timeout)
if osn=="windows": return _connect_windows(ssid,password)
if osn=="darwin": return _connect_macos(ssid,password)
return False, f"Unsupported OS: {osn}"
class AutoConnector:
def __init__(self):
self.last_attempt=0.0; self.cooldown_s=30.0; self.per_ssid_timeout=10.0; self.total_budget_s=18.0; self.thread=None; self._lock=threading.Lock()
def online_quick(self)->bool: return _fast_probe(timeout=1.2)
def quality_ms(self)->float: return _http_probe(timeout=2.0)
def _run_once(self):
if self.online_quick(): return
known=_load_known();
if not known: return
t_start=time.time()
for item in known:
if time.time()-t_start>self.total_budget_s: return
ssid=item["ssid"]; pw=_get_saved_password(ssid)
ok,_msg=_connect_os(ssid,pw,timeout=int(self.per_ssid_timeout))
if ok and self.online_quick(): return
def kick_async(self):
with self._lock:
now=time.time()
if now-self.last_attempt<self.cooldown_s: return
self.last_attempt=now
if self.thread and self.thread.is_alive(): return
self.thread=threading.Thread(target=self.run_once, daemon=True); self.thread.start()
NET = AutoConnector()
# ----------- coverage heuristic -----------
def coverage_score_from_snippets(snippets: list, scores: list) -> float:
if not snippets or not scores: return 0.0
s = sorted(scores, reverse=True)[:3]
base = sum(s) / len(s) if s else 0.0 # type: ignore
bonus = min(0.15, 0.03 * len(snippets))
return float(max(0.0, min(1.0, base + bonus)))
# ----------- overlay / hotpatch -----------
ALLOWED_PATCH_KEYS={"prompt_head","retrieval_k","token_budget","temperature","router_rules","web_threshold"}
def _load_overrides():
if os.path.exists(RUNTIME_OVERRIDES):
try: return json.load(open(RUNTIME_OVERRIDES,"r",encoding="utf-8"))
except Exception: return {}
return {}
def _save_overrides(ovr:dict):
json.dump(ovr, open(RUNTIME_OVERRIDES,"w",encoding="utf-8"), indent=2)
class RuntimeOverlay:
def __init__(self): self.ovr=_load_overrides()
def apply_to(self, hive: "Hive"):
o=self.ovr or {}
if isinstance(o.get("prompt_head"),str): hive.compiler.override_head=o["prompt_head"]
if isinstance(o.get("token_budget"),int): hive.compiler.override_budget=max(256, min(8192, o["token_budget"]))
hive.retrieval_k=int(o.get("retrieval_k",6)); hive.retrieval_k=max(3,min(24,hive.retrieval_k))
hive.decoding_temperature=float(o.get("temperature",0.7)); hive.decoding_temperature=max(0.0,min(1.5,hive.decoding_temperature))
rr=o.get("router_rules") or []
if isinstance(rr,list):
try: hive.engine.router_rules=[re.compile(pat,re.I) for pat in rr if isinstance(pat,str) and pat]
except re.error: hive.engine.router_rules=[]
t=o.get("web_threshold",None); hive.web_threshold=float(t) if isinstance(t,(int,float)) else 0.40
def patch(self, patch:dict, actor_role:str="hive")->Tuple[bool,str]:
if not CFG["ALLOW_RUNTIME_HOTPATCH"]: return False,"Runtime hotpatch disabled."
if actor_role not in ("hive","admin_general","admin_super","owner"): return False,"Unauthorized actor."
for k in list(patch.keys()):
if k not in ALLOWED_PATCH_KEYS: patch.pop(k,None)
if not patch: return False,"No allowed keys."
self.ovr.update(patch); _save_overrides(self.ovr); return True,"Patched."
# ----------- safe reboot -----------
def _persist_before_reboot():
try: json.dump({"ts":time.time(),"note":"self-reboot"}, open(os.path.join(CFG["STATE_DIR"],"last_reboot.json"),"w",encoding="utf-8"))
except Exception: pass
def safe_reboot(reason:str="optimization"):
if not CFG["ALLOW_SELF_REBOOT"]: return False,"Self-reboot disabled."
_persist_before_reboot()
try:
os.execv(sys.executable, [sys.executable, os.path.abspath(__file__)] + sys.argv[1:])
except Exception:
os._exit(3)
return True, f"Rebooting: {reason}"
# ----------- self optimizer (bounded) -----------
class SelfOptimizer(threading.Thread):
def __init__(self, hive: "Hive"):
super().__init__(daemon=True); self.hive=hive; self.stop=False; self.tick=45.0
self.last_pkg_check = 0
self.last_code_review = 0
self.code_review_interval = 3600 * 24 # Check for self-improvement once a day
self.pkg_check_interval = 3600 * 6 # Check for package updates every 6 hours
def _check_for_package_updates(self):
"""Checks for updates to packages in the allowlist and proposes changes."""
if time.time() - self.last_pkg_check < self.pkg_check_interval:
return
self.last_pkg_check = time.time()
print("[SelfOptimizer] Checking for package updates...")
try:
# Use pip to check for outdated packages
outdated_raw = subprocess.check_output([sys.executable, "-m", "pip", "list", "--outdated"], text=True)
for line in outdated_raw.splitlines()[2:]: # Skip header
parts = line.split()
if len(parts) < 3: continue
pkg_name, current_ver, latest_ver = parts[0], parts[1], parts[2]
# If the outdated package is in our allowlist, propose an update
if pkg_name in CFG["OPT_PKG_ALLOWLIST"]:
print(f"[SelfOptimizer] Found update for {pkg_name}: {current_ver} -> {latest_ver}")
proposal = ChangeProposal(
kind="package",
name=pkg_name,
version=latest_ver,
reason=f"Autonomous proposal to update from {current_ver} to {latest_ver}",
proposer="hive_optimizer"
)
proposal_id = self.hive.changes.propose(proposal)
# Automatically test the new proposal
test_result = self.hive.changes.test_and_compare(proposal_id, proposal)
print(f"[SelfOptimizer] Test result for {pkg_name} update: {test_result.get('passed')}, Delta: {test_result.get('delta')}")
except Exception as e:
print(f"[SelfOptimizer] Error checking for package updates: {e}")
def _propose_self_improvement(self):
"""Asks the LLM to review a part of its own code and proposes a change if valid."""
if time.time() - self.last_code_review < self.code_review_interval:
return
self.last_code_review = time.time()
print("[SelfOptimizer] Performing autonomous code review...")
try:
# Read its own source code
with open(__file__, 'r', encoding='utf-8') as f:
own_code = f.read()
# Select a function to review (e.g., coverage_score_from_snippets)
target_func_name = "coverage_score_from_snippets"
match = re.search(rf"def {target_func_name}\(.*?^$", own_code, re.S | re.M)
if not match:
print(f"[SelfOptimizer] Could not find function {target_func_name} to review.")
return
func_code = match.group(0)
prompt = f"""
Review the following Python function for correctness, efficiency, and adherence to best practices.
If you find an improvement, provide ONLY the complete, new, improved function code. Do not add any explanation.
If no improvement is needed, return the original code exactly as it is.
Original function:
```python
{func_code}
```
"""
# Use the Hive's own chat method to get the LLM's suggestion
suggested_code = self.hive.chat(prompt, "owner", "hive_optimizer")
# If the suggestion is different and seems valid, propose it as a code change
if suggested_code.strip() != func_code.strip() and "def" in suggested_code:
new_source = own_code.replace(func_code, suggested_code)
proposal = ChangeProposal(kind="code", name=__file__, patch_text=new_source, reason=f"Autonomous self-improvement of {target_func_name}", proposer="hive_optimizer")
proposal_id = self.hive.changes.propose(proposal)
print(f"[SelfOptimizer] Proposing self-improvement change {proposal_id}.")
test_result = self.hive.changes.test_and_compare(proposal_id, proposal)
print(f"[SelfOptimizer] Test result for self-improvement: {test_result.get('passed')}, Delta: {test_result.get('delta')}")
except Exception as e:
print(f"[SelfOptimizer] Error during self-improvement proposal: {e}")
def run(self):
while not self.stop:
time.sleep(self.tick)
if not CFG["AUTO_SELF_OPTIMIZE"]: continue
# --- Autonomous Proposal Generation ---
self._check_for_package_updates()
self._propose_self_improvement()
# --- Real-time Overlay Adjustments ---
vm=psutil.virtual_memory(); ovr={}
if vm.percent>88: # type: ignore
ovr["token_budget"]=max(512,int(0.75*(self.hive.compiler.override_budget or CFG["CTX_TOKENS"]))) # type: ignore
ovr["temperature"]=max(0.2,self.hive.decoding_temperature-0.1)
lat=(sum(self.hive.engine.stats["latency_ms"][-10:])/max(1,len(self.hive.engine.stats["latency_ms"][-10:]))) if self.hive.engine.stats["latency_ms"] else 0
if lat>1200: ovr["retrieval_k"]=max(3,self.hive.retrieval_k-1)
if ovr:
ok,_=self.hive.overlay.patch(ovr, actor_role="hive")
if ok: self.hive.overlay.apply_to(self.hive)
if CFG["ALLOW_SELF_REBOOT"] and vm.percent>94:
safe_reboot("refresh memory")
# ----------- internal optimization stack -----------
def _append_jsonl(path, rec):
with open(path, "a", encoding="utf-8") as f:
f.write(json.dumps(rec, ensure_ascii=False) + "\n")
@dataclass
class ChangeProposal:
kind: str # "model" | "package" | "code"
name: str # model id / package name / file target
version: str = ""
patch_text: str = ""# for "code": full replacement or diff
reason: str = ""
created_ts: float = time.time()
proposer: str = "hive"
id: str = ""
class Sandbox:
def __init__(self):
self.root=os.path.join(OPT_DIR, f"sandbox_{int(time.time())}")
os.makedirs(self.root, exist_ok=True)
self.venv=os.path.join(self.root,"venv")
def _run(self, args, timeout):
p=subprocess.run(args, capture_output=True, text=True, timeout=timeout)
return p.returncode, (p.stdout or "") + (p.stderr or "")
def create(self):
rc,out=self._run([sys.executable,"-m","venv",self.venv], timeout=120)
if rc!=0: raise RuntimeError("venv create failed: "+out)
def pip(self, pkg_spec):
py=os.path.join(self.venv,"bin","python") if os.name!="nt" else os.path.join(self.venv,"Scripts","python.exe")
rc,out=self._run([py,"-m","pip","install","--upgrade",pkg_spec], timeout=CFG["OPT_SANDBOX_TIMEOUT"])
if rc!=0: raise RuntimeError("pip install failed: "+out)
def run_snippet(self, code:str):
py=os.path.join(self.venv,"bin","python") if os.name!="nt" else os.path.join(self.venv,"Scripts","python.exe")
tmp=os.path.join(self.root,"snippet.py"); open(tmp,"w",encoding="utf-8").write(code)
rc,out=self._run([py,tmp], timeout=CFG["OPT_SANDBOX_TIMEOUT"]); return rc,out
def _synthetic_eval(hive_factory, prompts: List[str]) -> Dict:
lat_ms=[]; toks_s=[]; quality=0.0
for p in prompts:
t0=time.time()
h=hive_factory()
out=h.pipe(h.compiler.compile(p, []), max_new_tokens=64, do_sample=False, temperature=0.2) # type: ignore
t1=time.time()
text=out[0]["generated_text"]
lat_ms.append((t1-t0)*1000)
toks=max(1,len(text.split())); toks_s.append(toks/max(0.001,(t1-t0)))
q=sum(1 for w in set(re.findall(r"\w+", p.lower())) if w in text.lower())/max(1,len(set(re.findall(r"\w+", p.lower()))))
quality+=q
n=max(1,len(prompts))
return {"lat_ms":sum(lat_ms)/n, "toks_s":sum(toks_s)/n, "quality":quality/n}
class ChangeManager:
def __init__(self, hive_cls):
self.hive_cls=hive_cls
def _allowed_pkg(self, name):
return any(name.strip().startswith(allow.strip()) for allow in CFG["OPT_PKG_ALLOWLIST"])
def _allowed_model(self, mid):
return mid in CFG["OPT_MODEL_ALLOWLIST"]
def propose(self, cp: ChangeProposal)->str:
cp.id=f"chg_{int(time.time())}_{abs(hash(cp.name))%100000}"; _append_jsonl(OPT_PROPOSALS, cp.__dict__); return cp.id
def test_and_compare(self, cp_id:str, proposal: ChangeProposal)->Dict:
def base_hive(): return self.hive_cls(model_id=None)
prompts=["Summarize the water cycle.","Translate to French: the quick brown fox jumps over the lazy dog.","Two-sentence difference between TCP and UDP."]
base=_synthetic_eval(base_hive, prompts)
sand=Sandbox(); sand.create()
model_override=None
try:
if proposal.kind=="package":
if not self._allowed_pkg(proposal.name): return {"ok":False,"reason":"package not allowlisted"}
spec=proposal.name + (("=="+proposal.version) if proposal.version else "")
sand.pip(spec)
elif proposal.kind=="model":
if not self._allowed_model(proposal.name): return {"ok":False,"reason":"model not allowlisted"}
model_override=proposal.name
elif proposal.kind=="code":
target=os.path.basename(__file__); patched=os.path.join(sand.root,target)
with open(patched,"w",encoding="utf-8") as f: f.write(proposal.patch_text or "")
code=f"import importlib.util, json; p=r'{patched}'; spec=importlib.util.spec_from_file_location('hmod',p); m=importlib.util.module_from_spec(spec); spec.loader.exec_module(m); h=m.Hive(); print(json.dumps({{'ok':True}}))"
rc,out=sand.run_snippet(code)
if rc!=0 or '"ok": true' not in out.lower(): return {"ok":False,"reason":"patch smoke test failed","out":out}
except Exception as e:
return {"ok":False,"reason":f"sandbox failed: {e}"}
def cand_hive(): return self.hive_cls(model_id=model_override) if model_override else self.hive_cls(model_id=None)
cand=_synthetic_eval(cand_hive, prompts)
delta={"lat_ms": base["lat_ms"]-cand["lat_ms"], "toks_s": cand["toks_s"]-base["toks_s"], "quality": cand["quality"]-base["quality"]}
passed=True
if CFG["OPT_THRESH_LATENCY_MS"]>0 and delta["lat_ms"]<CFG["OPT_THRESH_LATENCY_MS"]: passed=False
if CFG["OPT_THRESH_TOKS_PER_S"]>0 and delta["toks_s"]<CFG["OPT_THRESH_TOKS_PER_S"]: passed=False
if delta["quality"]<CFG["OPT_THRESH_QUALITY"]: passed=False
result={"ok":True,"proposal":proposal.__dict__,"base":base,"cand":cand,"delta":delta,"passed":passed}
_append_jsonl(OPT_RESULTS, result); return result
def apply(self, result:Dict)->Tuple[bool,str]:
prop=result.get("proposal",{}); kind=prop.get("kind"); name=prop.get("name","")
if not result.get("passed"): return False,"did not meet thresholds"
if kind=="package":
if not self._allowed_pkg(name): return False,"package not allowlisted"
try:
subprocess.check_call([sys.executable,"-m","pip","install","--upgrade", name + (("=="+prop.get("version","")) if prop.get("version") else "")])
return True,"package installed"
except Exception as e: return False,f"pip failed: {e}"
if kind=="model":
if not self._allowed_model(name): return False,"model not allowlisted"
pref=os.path.join(OPT_DIR,"preferred_model.json"); json.dump({"model_id":name,"ts":time.time()}, open(pref,"w",encoding="utf-8"))
return True,"model preference recorded (takes effect after restart)"
if kind=="code":
if not CFG["OPT_AUTO_APPLY"]: return False,"awaiting Owner approval for code changes"
try:
target=os.path.abspath(__file__); backup=target+f".bak_{int(time.time())}"; shutil.copyfile(target,backup)
open(target,"w",encoding="utf-8").write(prop.get("patch_text","")); return True,"code updated (backup created); restart recommended"
except Exception as e: return False,f"code write failed: {e}"
return False,"unknown change type"
# ----------- Hive core -----------
# --- Memory & Manifest Helpers (auto-inserted) ---
import tempfile, urllib.request, tarfile, zipfile
from pathlib import Path as _Path
def _human_ts(ts: int) -> str:
import datetime
try:
return datetime.datetime.utcfromtimestamp(ts).strftime("%Y-%m-%d %H:%M:%S UTC")
except Exception:
return str(ts)
INGEST_PROGRESS = os.path.join(CFG.get("STATE_DIR","./state"), "ingest_progress.json")
def _load_progress():
try:
if os.path.exists(INGEST_PROGRESS):
return json.load(open(INGEST_PROGRESS, "r", encoding="utf-8"))
except Exception:
pass
return {"done": [], "stage": 0, "ts": 0}
def _save_progress(p):
try:
json.dump(p, open(INGEST_PROGRESS, "w", encoding="utf-8"), indent=2)
except Exception:
pass
def update_self_manifest(datasets_done: list, vectors_total: int):
"""Rewrite the MEMORY_MANIFEST block inside this script."""
if not CFG.get("HIVE_ALLOW_SELF_WRITE_MANIFEST", True):
return False, "self-write disabled"
target = CFG.get("HIVE_SELF_WRITE_FILE") or os.path.abspath(__file__)
try:
with open(target, "r", encoding="utf-8") as f:
src = f.read()
except Exception as e:
return False, f"read error: {e}"
start_tag = "# --- BEGIN MEMORY MANIFEST (auto-updated) ---"
end_tag = "# --- END MEMORY MANIFEST ---"
if start_tag not in src or end_tag not in src:
return False, "manifest markers not found"
head, rest = src.split(start_tag, 1)
_, tail = rest.split(end_tag, 1)
payload = {
"updated_ts": int(time.time()),
"datasets_done": sorted(list({*datasets_done})),
"vectors_total": int(vectors_total),
"notes": "Set HIVE_ALLOW_SELF_WRITE_MANIFEST=0 to stop auto-updates."
}
block = start_tag + "\n# (This block is auto-written by Hive to record what datasets/files\n# have already been converted into memory (curves). Do not edit by hand.)\n"
block += "MEMORY_MANIFEST = " + json.dumps(payload, indent=4, ensure_ascii=False) + "\n"
block += end_tag
new_src = head + block + tail
tmp = target + ".tmp"
try:
with open(tmp, "w", encoding="utf-8") as f:
f.write(new_src)
os.replace(tmp, target)
except Exception as e:
return False, f"write error: {e}"
return True, f"manifest updated ({_human_ts(payload['updated_ts'])})"
def _curves_present(curve_dir: str) -> bool:
idx = os.path.join(curve_dir, "faiss.index")
meta = os.path.join(curve_dir, "meta.jsonl")
return os.path.exists(idx) and os.path.getsize(idx) > 0 and os.path.exists(meta)
def _extract_archive(archive_path: str, dest_dir: str) -> bool:
os.makedirs(dest_dir, exist_ok=True)
try:
if archive_path.endswith(".tar.gz") or archive_path.endswith(".tgz"):
with tarfile.open(archive_path, "r:gz") as tf:
tf.extractall(dest_dir)
return True
if archive_path.endswith(".zip"):
with zipfile.ZipFile(archive_path, "r") as z:
z.extractall(dest_dir)
return True
except Exception as e: # type: ignore
with open(os.path.join(CFG["STATE_DIR"], "restore_error.log"), "a", encoding="utf-8") as f: f.write(f"extract: {e}\n")
return False
def _restore_from_local_archive(curve_dir: str):
arc = CFG.get("CURVES_ARCHIVE_LOCAL") or "curves.tar.gz"
if not arc or not os.path.exists(arc):
return False, "no local archive"
ok = _extract_archive(arc, curve_dir)
return (ok, "restored from local archive" if ok else "local extract failed")
def _restore_from_url(curve_dir: str):
url = (CFG.get("CURVES_ARCHIVE_URL") or "").strip()
if not url:
return False, "no URL provided"
try:
tmp = os.path.join(tempfile.gettempdir(), f"curves_{int(time.time())}.pkg")
urllib.request.urlretrieve(url, tmp)
ok = _extract_archive(tmp, curve_dir)
try: os.remove(tmp)
except: pass
return (ok, "restored from URL" if ok else "URL extract failed")
except Exception as e: # type: ignore
open(os.path.join(CFG.get("STATE_DIR","./state"), "restore_error.log"), "a", encoding="utf-8").write(f"url: {e}\n")
return False, "URL download error"
def _restore_from_hf_dataset(curve_dir: str):
repo_id = (CFG.get("CURVES_HF_DATASET") or "").strip()
sub = (CFG.get("CURVES_HF_SUBPATH") or "").strip()
if not repo_id:
return False, "no dataset repo"
try:
from huggingface_hub import snapshot_download, hf_hub_download
cache = os.path.join("/tmp", "hf_curves_cache")
token = CFG.get("HF_READ_TOKEN") or None
for fname in ["curves.tar.gz", "curves.zip"]:
try:
fp = hf_hub_download(repo_id=repo_id, filename=(sub + "/" + fname) if sub else fname, token=token, local_dir=cache, local_dir_use_symlinks=False)
if _extract_archive(fp, curve_dir):
return True, f"restored from HF dataset file {fname}"
except Exception:
pass
local_dir = snapshot_download(repo_id=repo_id, token=token, local_dir=cache, local_dir_use_symlinks=False)
# auto-archive after each dataset if configured
if CFG.get("HIVE_AUTO_ARCHIVE", True) and str(CFG.get("HIVE_AUTO_ARCHIVE_MODE","per_chain")).lower() == "per_dataset":
try:
_ok_arc, _ap = _archive_memory(curve_dir) # type: ignore
open(os.path.join(CFG["STATE_DIR"], "archive_status.log"), "a", encoding="utf-8").write(
json.dumps({"ts": time.time(), "mode": "per_dataset", "ok": _ok_arc, "path": _ap}) + "\n"
)
except Exception as _e_arc:
open(os.path.join(CFG["STATE_DIR"], "archive_error.log"), "a", encoding="utf-8").write(
"per_dataset: " + str(_e_arc) + "\n"
) # type: ignore
src = os.path.join(local_dir, sub) if sub else local_dir
if os.path.isdir(src):
for root, dirs, files in os.walk(src):
rel = os.path.relpath(root, src)
dest_root = os.path.join(curve_dir, rel) if rel != "." else curve_dir
os.makedirs(dest_root, exist_ok=True)
for fn in files:
shutil.copy2(os.path.join(root, fn), os.path.join(dest_root, fn))
return True, "restored from HF dataset snapshot"
return False, "HF snapshot missing subpath"
except Exception as e: # type: ignore
open(os.path.join(CFG.get("STATE_DIR","./state"), "restore_error.log"), "a", encoding="utf-8").write(f"hf: {e}\n")
return False, "HF restore error"
def restore_curves_if_missing(curve_dir: str):
if not CFG.get("HIVE_CURVES_AUTO_RESTORE", True):
return False, "auto-restore disabled"
if _curves_present(curve_dir):
return True, "memory present"
ok, msg = _restore_from_local_archive(curve_dir)
if ok and _curves_present(curve_dir):
return True, msg
ok, msg = _restore_from_url(curve_dir)
if ok and _curves_present(curve_dir):
return True, msg
ok, msg = _restore_from_hf_dataset(curve_dir)
if ok and _curves_present(curve_dir):
return True, msg
return False, "no restore source succeeded"
def _archive_memory(curve_dir: str, archive_path: str=None) -> tuple: # type: ignore
"""Tar+gzip the memory directory to archive_path (default curves.tar.gz)."""
try:
import tarfile, tempfile as _tf
ap = archive_path or CFG.get("HIVE_ARCHIVE_PATH","curves.tar.gz") or "curves.tar.gz"
# write to temp then move for atomicity
tmp = os.path.join(_tf.gettempdir(), f"curves_{int(time.time())}.tar.gz")
with tarfile.open(tmp, "w:gz") as tar:
tar.add(curve_dir, arcname="curves")
os.replace(tmp, ap)
return True, ap
except Exception as e:
try:
open(os.path.join(CFG["STATE_DIR"], "archive_error.log"), "a", encoding="utf-8").write(str(e)+"\n")
except Exception:
pass
return False, str(e)
if not CFG.get("CURVES_AUTO_RESTORE", True):
return False, "auto-restore disabled" # type: ignore
if _curves_present(curve_dir):
return True, "curves already present"
ok, msg = _restore_from_local_archive(curve_dir)
if ok and _curves_present(curve_dir): return True, msg
ok, msg = _restore_from_url(curve_dir)
if ok and _curves_present(curve_dir): return True, msg
ok, msg = _restore_from_hf_dataset(curve_dir)
if ok and _curves_present(curve_dir): return True, msg
return False, "no restore source succeeded"
# --- End Memory & Manifest Helpers ---
# --- Staged Ingestion Orchestrator (auto) ---
def _plan_sources():
srcs = [s.strip() for s in (CFG.get("INGEST_SOURCES") or "").split(",") if s.strip()]
return srcs or (DEFAULT_SOURCES if "DEFAULT_SOURCES" in globals() else [])
def _next_batch(done: list, all_sources: list, k: int):
todo = [s for s in all_sources if s not in set(done)]
return todo[:max(k,0)]
def staged_ingest_once(curve_dir: str) -> dict:
"""Ingest a single stage (up to HIVE_INGEST_STAGE_SIZE datasets), respecting disk floor. Updates progress + manifest."""
try:
import shutil, time as _t
floor = int(CFG.get("HIVE_INGEST_MIN_FREE_GB", 8))
free_gb = shutil.disk_usage(".").free / (1024**3)
if free_gb < floor:
return {"ok": False, "reason": f"free disk {free_gb:.1f} GB < floor {floor} GB"}
all_sources = _plan_sources()
prog = _load_progress()
batch = _next_batch(prog.get("done", []), all_sources, int(CFG.get("HIVE_INGEST_STAGE_SIZE",3)))
if not batch:
return {"ok": True, "reason": "all sources already ingested", "done": prog.get("done", [])}
total_added = 0
actually_ingested = []
for ds in batch:
added = ingest_all(curve_dir, [ds], scope="general")
total_added += added
actually_ingested.append(ds)
prog["done"].append(ds)
# check disk after each dataset
free_gb = shutil.disk_usage(".").free / (1024**3)
if free_gb < floor:
break
prog["stage"] = int(prog.get("stage", 0)) + 1
prog["ts"] = int(_t.time())
_save_progress(prog)
# manifest update
try: # type: ignore
vecs = 0
try:
vecs = CurveStore(curve_dir).index.ntotal
except Exception:
pass
update_self_manifest(prog.get("done", []), int(vecs))
except Exception:
pass
return {"ok": True, "ingested": actually_ingested, "added_vectors_est": total_added, "stage": prog["stage"]}
except Exception as _e:
try:
open(os.path.join(CFG.get("STATE_DIR","./state"), "ingest_error.log"), "a", encoding="utf-8").write(str(_e)+"\n")
except Exception:
pass
return {"ok": False, "error": str(_e)}
def staged_ingest_chain_if_enabled(curve_dir: str) -> dict:
"""Run 0..N stages this boot depending on HIVE_INGEST_CHAIN and HIVE_INGEST_CHAIN_MAX, with safety checks."""
if not CFG.get("HIVE_INGEST_STAGED", True):
return {"ok": True, "reason": "staged disabled"}
results = []
max_stages = max(0, int(CFG.get("HIVE_INGEST_CHAIN_MAX", 2))) if CFG.get("HIVE_INGEST_CHAIN", True) else (1 if CFG.get("HIVE_INGEST_NEXT") else 0)
for i in range(max_stages):
r = staged_ingest_once(curve_dir)
results.append(r)
if not r.get("ok", False):
break
if r.get("reason") == "all sources already ingested":
break
# stop if no items were ingested (e.g., disk floor hit immediately)
if not r.get("ingested"):
break
# auto-archive after chain if configured
if CFG.get("HIVE_AUTO_ARCHIVE", True) and str(CFG.get("HIVE_AUTO_ARCHIVE_MODE","per_chain")).lower() in ("per_chain","perdataset","per-dataset"):
try:
_ok_arc, _ap = _archive_memory(curve_dir) # type: ignore
open(os.path.join(CFG["STATE_DIR"], "archive_status.log"), "a", encoding="utf-8").write(json.dumps({"ts":time.time(),"mode":"per_chain","ok":_ok_arc,"path":_ap})+"\n")
except Exception as _e_arc:
open(os.path.join(CFG["STATE_DIR"], "archive_error.log"), "a", encoding="utf-8").write("per_chain: "+str(_e_arc)+"\n")
return {"ok": True, "chain_results": results}
# --- End Staged Ingestion Orchestrator ---
# type: ignore
class PromptCompiler:
def __init__(self):
self.override_head=None
self.override_budget=None
self.personas = {
"default": "You are a helpful assistant. Use the provided facts to answer the user's question concisely.",
"en": "You are an encouraging and patient English tutor. Use the facts to explain the topic clearly and simply.",
"essay_review": "You are a writing critic. Provide a detailed review of the following essay, focusing on structure, clarity, and vocabulary. Use the provided facts for context if needed.",
"pronounce": "You are a pronunciation coach. Explain how to say the word, using the provided phonetic hints.", # type: ignore
}
def compile(self, final_instruction: str, snippets: List[Dict], token_budget: int = 600, intent: str = "default", user_lang: str = "en") -> str:
if self.override_budget: token_budget = self.override_budget
# Simple ranker: prioritize snippets with more overlapping words.
query_words = set(re.findall(r"\w+", final_instruction.lower()))
def rank_score(snippet): # type: ignore
text = (snippet.get("text", "") or "").lower()
return len(query_words.intersection(re.findall(r"\w+", text)))
ranked = sorted(snippets, key=rank_score, reverse=True)
# Synthesize a concise "insight" from the best snippets instead of just listing them.
# This creates a more natural and integrated prompt for the LLM.
insight = ""
if ranked:
top_snippet_text = (ranked[0].get("text", "") or "").strip()
# Create a very short, focused summary of the most relevant fact.
insight_summary = ' '.join(top_snippet_text.split()[:25]) + ('...' if len(top_snippet_text.split()) > 25 else '')
insight = f"Based on my knowledge, I know that: \"{insight_summary}\". Use this key insight to inform your answer."
# Select persona based on intent, falling back to language-specific default
head = self.override_head or self.personas.get(intent, self.personas.get(user_lang, self.personas["default"]))
return f"{head} {insight}\n\nUser: {final_instruction}\nAssistant:"
class Hive:
def __init__(self, model_id: Optional[str]=None, device: Optional[str]=None, caps: Optional[Dict]=None, lite: bool = False):
self.caps = caps or probe_caps()
self.lite_mode = lite
if not self.lite_mode:
self.store=CurveStore(CFG["CURVE_DIR"]); self.librarian=LibrarianCurve(self.store)
self.engine=EngineCurve()
self.overlay=RuntimeOverlay()
self.changes=ChangeManager(Hive)
self.compiler=PromptCompiler()
if not model_id:
model_id, info = pick_model(self.caps)
device = info.get("device","cpu")
self.model_id=model_id or CFG["MODEL_OVERRIDE"] or CANDIDATES[0][0]
trust=True; kwargs={}
if torch and torch.cuda.is_available() and device=="cuda":
kwargs.update(dict(torch_dtype=torch.float16))
use_remote = CFG["HIVE_USE_HF_INFERENCE"]
if use_remote: # type: ignore
from huggingface_hub import InferenceClient
endpoint = CFG["HIVE_HF_ENDPOINT"] or None
token = CFG["HF_READ_TOKEN"] or os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN") or None
self.client = InferenceClient(model=self.model_id if endpoint is None else None, token=token, timeout=60, base_url=endpoint)
def _remote_pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, **kw): # type: ignore
stop = kw.get("stop_sequences") or ["</s>", "Assistant:"]
resp = self.client.text_generation(prompt, max_new_tokens=int(max_new_tokens), temperature=float(temperature), do_sample=bool(do_sample), stop_sequences=stop, stream=False)
return [{"generated_text": resp}]
self.pipe = _remote_pipe
else:
self.tok = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=trust)
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=trust, **kwargs)
self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tok, device=0 if (torch and torch.cuda.is_available() and device=="cuda") else -1, return_full_text=False)
if not self.lite_mode:
self.retrieval_k=6; self.decoding_temperature=0.7; self.web_threshold=0.40
self.overlay.apply_to(self)
self.selfopt=SelfOptimizer(self); self.selfopt.start()
def summarize_for_memory(self, text:str, max_new_tokens:int=160)->str:
prompt=("Condense the following content into 4–6 bullet points with names, dates, numbers, and a one-line takeaway. Keep it factual.\n\n"
f"{text[:3000]}\n\nSummary:")
out=self.pipe(prompt, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.01)
return out[0]["generated_text"].split("Summary:",1)[-1].strip()
def add_curve(self, text:str, meta:Dict, scope:str="general"):
if self.lite_mode: return
self.librarian.ingest_pairs([text],[meta],scope)
def online_update(self, query_hint: Optional[str]=None)->Dict:
if self.lite_mode: return {"ok": False, "reason": "lite mode"}
if not CFG["ONLINE_ENABLE"]: return {"ok":False,"reason":"online disabled"}
if not online_available(int(CFG["ONLINE_TIMEOUT"])): return {"ok":False,"reason":"offline"}
seen=_load_json(ONLINE_DB, {})
urls=[u.strip() for u in (CFG["ONLINE_SOURCES"] or "").split(",") if u.strip()]
items=fetch_rss(urls, timeout=int(CFG["ONLINE_TIMEOUT"]), limit=30)
added=0
for it in items:
key=hashlib.sha1(((it.get("link") or "")+(it.get("title") or "")).encode("utf-8","ignore")).hexdigest()
if key in seen: continue
base=(it.get("title","")+"\n\n"+it.get("summary","")).strip()
summ=self.summarize_for_memory(base)
self.add_curve(summ, {"dataset":"online_rss","url":it.get("link"),"title":it.get("title"),"published":it.get("published")}, scope="general")
seen[key]=int(time.time()); added+=1
_save_json(ONLINE_DB, seen); return {"ok":True,"added":added}
def web_update_and_store(self, query:str, max_docs:int, timeout:int)->int:
if self.lite_mode: return 0
if not (CFG["ONLINE_ENABLE"] and online_available(timeout)): return 0
hits=web_search_snippets(query, max_results=max_docs, timeout=timeout); added=0
for h in hits:
body=(h.get("title","")+"\n\n"+(h.get("body","") or "")).strip()
if not body: continue
summ=self.summarize_for_memory(body)
meta={"dataset":"web_update","source":h.get("href",""),"title":h.get("title",""),"ts":time.time()}
self.add_curve(summ, meta, scope="general"); added+=1
return added
def chat(self, message:str, effective_role:str, caller_id: Optional[str],
k:int=None, max_new_tokens:int=256, temperature:float=None, prompt_override: Optional[str] = None) -> str: # type: ignore
if self.lite_mode:
# In lite mode, we bypass all complex logic and just chat.
prompt = f"User: {message}\nAssistant:"
temp = temperature if temperature is not None else 0.7
out = self.pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=temp)
return out[0]["generated_text"].strip()
online_now=NET.online_quick()
if not online_now: NET.kick_async()
kk = k if k is not None else self.retrieval_k
temp = temperature if temperature is not None else self.decoding_temperature
user_obj, _ = _find_user(_load_users(), caller_id)
user_prefs = (user_obj.get("prefs", {}) or {}) if user_obj else {}
user_lang = user_prefs.get("language", "en")
phonics_on = user_prefs.get("phonics_on", False)
intent = self.engine.choose_route(message)
final_message = message
if intent == "pronounce" or (phonics_on and user_lang == 'en'):
match = re.search(r"(pronounce|say|spell|spelling of)\s+['\"]?([a-zA-Z\-']+)['\"]?", message, re.I)
word_to_process = match.group(2) if match else (message.split()[-1] if len(message.split()) < 4 else None)
if word_to_process:
phonics_hint = phonics(word_to_process) # type: ignore
final_message = f"Explain how to pronounce the word '{word_to_process}'. Use this phonics hint in your explanation: {phonics_hint}"
elif prompt_override:
final_message = f"{prompt_override}\n\nHere is the text to work on:\n{message}"
if "review" in prompt_override.lower() or "essay" in prompt_override.lower(): intent = "essay_review" # type: ignore
snippets, scores = self.librarian.retrieve_scoped_with_scores(message, effective_role, caller_id, k=kk)
cov=coverage_score_from_snippets(snippets, scores)
SHOULD_TRY_WEB=(CFG["ONLINE_TRIGGER"].lower()=="auto") and CFG["ONLINE_ENABLE"] and online_now
if cov < self.web_threshold and SHOULD_TRY_WEB:
try:
self.web_update_and_store(message, max_docs=int(CFG["ONLINE_MAX_RESULTS"] or 5), timeout=int(CFG["ONLINE_TIMEOUT"] or 8)) # type: ignore
snippets, scores = self.librarian.retrieve_scoped_with_scores(message, effective_role, caller_id, k=kk) # type: ignore
except Exception:
pass
prompt=self.compiler.compile(final_message, snippets, token_budget=int(CFG["CTX_TOKENS"]), intent=intent, user_lang=user_lang)
_=self.engine.run(message, snippets) # type: ignore
out=self.pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=temp)
reply=out[0]["generated_text"].strip()
if CFG["NO_PROFANITY"]:
reply=re.sub(r"\b(fuck|shit|bitch|asshole|cunt|dick|pussy|nigger|motherfucker)\b","[censored]",reply, flags=re.I)
if caller_id:
log_path = os.path.join(CFG["HIVE_HOME"], "users", "conversations", f"{caller_id}.jsonl")
log_entry = {
"ts": time.time(), "message": message, "effective_role": effective_role,
"intent": intent, "snippets_used": [s.get("text", "")[:100] for s in snippets[:3]],
"reply": reply
}
_append_jsonl(log_path, log_entry)
return reply
# --------------- UI ---------------
HELP=f"""
**Admin/User mode**: Admins (general/super) and Owner log in with password (Owner also needs second factor). After login choose Admin or User mode.
**Owner-only code edits** are enforced via Change Manager policy. Hive can sandbox, test, and propose; code writes require Owner approval (`OPT_AUTO_APPLY=1`) unless Owner applies manually.
**Offline/Online**: Works fully offline from curves. If online and enabled, fetches RSS/web snippets ➡️ summarizes locally ➡️ saves to curves (persists offline).
**Voice**: Faster-Whisper ASR (auto language), Piper TTS mixed-language, phonics hints (English).
**Privacy**: Sensitive/first-person inputs route to user-private library; neutral info to general.
"""
def launch_ui(bootstrap_instance: "Bootstrap"):
# Lazily initialize a global Hive instance to be shared across UI callbacks
HIVE_INSTANCE: Optional[Hive] = None
def get_hive_instance():
"""
Returns the appropriate Hive instance.
If the full instance is ready, returns it.
Otherwise, returns the 'lite' instance for immediate chat.
"""
nonlocal HIVE_INSTANCE
# Check if the full instance is ready without blocking
if bootstrap_instance.hive_ready.is_set():
if HIVE_INSTANCE is None or HIVE_INSTANCE == bootstrap_instance.hive_lite_instance:
HIVE_INSTANCE = bootstrap_instance.hive_instance
print("[UI] Full Hive instance attached.")
elif HIVE_INSTANCE is None:
HIVE_INSTANCE = bootstrap_instance.hive_lite_instance
print("[UI] Lite Hive instance attached.")
return HIVE_INSTANCE
with gr.Blocks(title="Hive 🐝 Full Merged Optimized") as demo:
gr.Markdown(f"## {CFG['AGENT_NAME']} 🐝 Full Merged, Offline-first + Online updates + Internal Optimization")
with gr.Row():
login_name=gr.Textbox(label="Name or ID")
login_pass=gr.Textbox(label="Password (admins only)", type="password")
login_second=gr.Textbox(label="Second (owner only)", type="password")
login_btn=gr.Button("Login")
login_status=gr.Markdown()
uid_state=gr.State(None); role_state=gr.State("guest"); mode_state=gr.State("user"); phonics_state=gr.State(False)
def do_login(nm,pw,sec):
ok, info=attempt_login(nm or "", pw or "", sec or None)
d=_load_users(); u,_=_find_user(d, nm or "")
role=u["role"] if u else "guest"
prof=_load_json(ADAPT_DB,{}).get(u["id"] if u else "guest",{}); phon_on=bool(prof.get("phonics_on",False))
return info,(u["id"] if u else None),role,"user",phon_on
login_btn.click(do_login,[login_name,login_pass,login_second],[login_status, uid_state, role_state, mode_state, phonics_state])
mode_picker=gr.Radio(choices=["user","admin"], value="user", label="Mode (admins/owner only)")
def set_mode(role, pick):
if role not in ("admin_general","admin_super","owner"): return "user"
return pick
mode_picker.change(set_mode, [role_state, mode_picker], [mode_state])
with gr.Tab("Hive"):
core_status = gr.Markdown("⏳ **Initializing Full Hive Core...** You can chat with the Lite model now. Advanced features will be enabled shortly.")
chat=gr.Chatbot(height=420)
msg=gr.Textbox(placeholder=f"Talk to {CFG['AGENT_NAME']} (Lite Mode)", interactive=True)
def talk(m, uid, role, mode, hist):
hive_instance = get_hive_instance()
eff = role if mode=="admin" else "user"
# --- Tutor Intent Routing ---
prompt_override = None
max_tokens = 512 # Default for chat
text_lower = (m or "").lower()
if len((m or "").split()) > 100 and ("review" in text_lower or "feedback" in text_lower or "essay" in text_lower):
prompt_override = "Please provide a detailed review of the following essay, focusing on structure, clarity, and vocabulary. Offer specific suggestions for improvement."
max_tokens = 1024 # Larger budget for reviews
elif "proofread" in text_lower or "grammar" in text_lower or "correct this" in text_lower:
prompt_override = "Please proofread and correct the following text, providing clear explanations for each change to help me learn."
max_tokens = 1024 # Larger budget for proofreading
reply=hive_instance.chat(m or "", effective_role=eff, caller_id=uid, prompt_override=prompt_override, max_new_tokens=max_tokens)
# In full mode, perform privacy routing and save to memory
if not hive_instance.lite_mode:
personal = False
if re.search(r"\b(my|mine|me|I|our|we)\b", (m or ""), re.I) and re.search(r"\b(password|address|email|phone|ssn|school|kid|medical|bank|card|passport)\b", (m or ""), re.I):
personal = True
scope = f"user:{uid}" if (uid and personal) else "general"
if hive_instance.librarian: hive_instance.librarian.ingest_pairs([m or ""],[{"dataset":"chat"}], scope=scope)
return hist+[[m, reply]], ""
msg.submit(talk,[msg,uid_state,role_state,mode_state,chat],[chat,msg])
with gr.Accordion("Tools & Settings", open=False):
# This function will run on UI load, wait for the core, and then update the UI.
def wait_for_hive_core():
# This function now just updates the UI when the full core is ready.
bootstrap_instance.hive_ready.wait()
# Re-fetch instance to ensure it's the full one.
get_hive_instance()
ready_placeholder = f"Talk to {CFG['AGENT_NAME']}"
# The textbox is already interactive, we just update the status and placeholder
return "✅ **Full Hive Core is Ready.**", gr.Textbox(placeholder=ready_placeholder)
demo.load(wait_for_hive_core, [], [core_status, msg])
with gr.Row():
with gr.Column():
gr.Markdown("### Your Profile Settings")
profile_status = gr.Markdown("Login to see your profile.")
profile_lang = gr.Dropdown(choices=["en","es","fr","de","zh"], label="Preferred Language")
profile_phonics = gr.Checkbox(label="Enable Phonics Assist (for English)")
profile_save_btn = gr.Button("Save Profile")
def load_profile(uid):
if not uid: return "Login to see your profile.", "en", False
d = _load_users(); u, _ = _find_user(d, uid)
if not u: return "User not found.", "en", False
prefs = u.get("prefs", {}) or {}
lang = prefs.get("language", "en")
phonics_on = prefs.get("phonics_on", False)
return f"Logged in as **{u.get('name')}** ({u.get('role')})", lang, phonics_on
demo.load(load_profile, [uid_state], [profile_status, profile_lang, profile_phonics])
def save_profile(uid, lang, phonics_on):
if not uid: return "Login to save your profile."
d = _load_users(); u, _ = _find_user(d, uid)
if not u: return "User not found. Cannot save."
if "prefs" not in u or not isinstance(u["prefs"], dict): u["prefs"] = {}
u["prefs"].update({"language": lang, "phonics_on": phonics_on}); _save_json(USERS_DB, d)
return "Profile saved successfully!"
profile_save_btn.click(save_profile, [uid_state, profile_lang, profile_phonics], [profile_status])
with gr.Column():
gr.Markdown("### Voice Tools")
mic=gr.Audio(sources=["microphone"], type="filepath", label="Speak (5–10s)")
with gr.Row():
transcribe_btn=gr.Button("Transcribe")
reply_btn=gr.Button("Reply + Speak")
transcript=gr.Textbox(label="Transcript")
reply_text=gr.Textbox(label="Assistant Reply")
reply_audio=gr.Audio(type="filepath", label="Assistant Voice")
def do_transcribe(path, uid):
if not path: return ""
text=asr_transcribe(path, uid, None)
return text
transcribe_btn.click(do_transcribe,[mic,uid_state],[transcript])
def do_reply(uid, role, mode, text, hist) -> tuple:
if not text: return "", None, hist
hive_instance = get_hive_instance()
eff = role if mode=="admin" else "user"; print(eff)
full_reply = hive_instance.chat(text, effective_role=eff, caller_id=uid)
wav=synthesize_multilang(full_reply, CFG["TTS_LANG"]); return full_reply, wav, hist + [[text, full_reply]]
reply_btn.click(do_reply,[uid_state, role_state, mode_state, transcript, chat],[reply_text, reply_audio, chat])
with gr.Row():
with gr.Column():
gr.Markdown("### Voice Enrollment")
enroll_audio=gr.Audio(sources=["microphone"], type="filepath", label="Record 5–10s for voiceprint")
enroll_btn=gr.Button("Enroll voice for current user"); enroll_status=gr.Markdown()
def do_enroll(uid, path):
if not uid: return "Login or specify user first."
if not path: return "No audio."
enroll_voice(uid, path); return "Voice enrolled."
enroll_btn.click(do_enroll,[uid_state, enroll_audio],[enroll_status])
who_btn=gr.Button("Login by Voice (users only)")
who_status=gr.Markdown()
def do_login_voice(path):
if not path: return "No audio.", None, "guest", "user"
uidv=identify_voice(path)
if not uidv: return "Voice not recognized. You can enroll as a new user.", None, "guest", "user"
d=_load_users()
for grp in ["users","admins_general","admins_super"]:
for u in d.get(grp,[]):
if u["id"]==uidv:
if u["role"] in ("admin_general","admin_super"):
return "Admin roles require password login.", None, "guest", "user"
return f"Welcome back, {u['name']} (user).", uidv, "user", "user"
if d["owner"]["id"]==uidv: return "Owner must login with password + second factor.", None, "guest", "user"
return "Matched unknown id; please login manually.", None, "guest", "user"
who_btn.click(do_login_voice,[mic],[who_status, uid_state, role_state, mode_state])
with gr.Column():
gr.Markdown("### Online & Wi-Fi")
wifi_status=gr.Markdown("Wi-Fi: checking...")
connect_now=gr.Button("Try auto-connect now (non-blocking)")
online_now=gr.Button("Fetch updates now"); online_status=gr.Markdown()
connect_now.click(lambda: (NET.kick_async() or "Auto-connect started in background."), [], [wifi_status])
online_now.click(lambda: ("Added %s new summaries to curves." % (get_hive_instance().online_update().get("added",0))), [], [online_status])
with gr.Tab("Help"): gr.Markdown(HELP)
# ------ Admin Controls (no separate tab; visible in Admin mode) ------
with gr.Accordion("Admin Controls (switch to Admin mode to enable)", open=False, visible=True) as admin_controls:
admin_info=gr.Markdown("Switch to **Admin mode** above to use these tools.")
target=gr.Textbox(label="Target name or id")
new_name=gr.Textbox(label="New name")
with gr.Row():
ingest_status = gr.Markdown("Memory Ingestion: Idle")
ingest_now_btn = gr.Button("Start Background Ingestion")
with gr.Row():
mem_compress_btn=gr.Button("Compress Memory (archive)")
compress_status=gr.Markdown("")
def compress_memory(h):
ok,msg= _archive_memory(str(h.store.dir)) # type: ignore
return msg
mem_compress_btn.click(lambda: compress_memory(get_hive_instance()), [], [compress_status])
with gr.Row():
hotpatch_patch=gr.Code(label="Paste hotpatch JSON (advanced)")
hotpatch_status=gr.Markdown("Awaiting patch")
hotpatch_apply=gr.Button("Apply Hotpatch")
def do_hotpatch(patch_json):
try: patch=json.loads(patch_json)
except Exception: return "Bad JSON."
ok,msg=get_hive_instance().overlay.patch(patch,get_hive_instance())
return msg
def run_ingest_background(hive_instance):
def ingest_task():
staged_ingest_chain_if_enabled(str(hive_instance.config["CURVE_DIR"]))
threading.Thread(target=ingest_task, daemon=True).start()
return "Background ingestion process started. See logs for details."
ingest_now_btn.click(lambda: run_ingest_background(get_hive_instance()), [], [ingest_status])
new_pass=gr.Textbox(label="New password")
new_role=gr.Dropdown(choices=["owner","admin_super","admin_general","user"], value="user", label="New role")
add_name=gr.Textbox(label="Add: name")
add_role=gr.Dropdown(choices=["admin_super","admin_general","user"], value="user", label="Add role")
add_pass=gr.Textbox(label="Add password (admins only)")
add_btn=gr.Button("Add user/admin")
rename_btn=gr.Button("Rename")
pass_btn=gr.Button("Change password")
role_btn=gr.Button("Change role")
out=gr.Markdown()
def is_admin(mode, role): return (mode=="admin") and (role in ("admin_general","admin_super","owner"))
def do_add(mode, role, caller, nm, rl, pw):
if not is_admin(mode, role): return "Switch to Admin mode to use this."
d=_load_users(); cu,_=_find_user(d, caller or "")
if not cu: return "Login first as admin."
if rl not in PERMS.get(cu["role"],{}).get("can_add",[]): return f"{cu['role']} cannot add {rl}."
uid=f"{rl}:{int(time.time())}"
entry={"id":uid,"name":nm,"role":rl,"pass":pw if rl!='user' else "", "prefs":{"activation_names":[CFG["AGENT_NAME"]],"language":"en"}}
if rl=="owner":
d["owner"]=entry
elif rl=="admin_super": d["admins_super"].append(entry)
elif rl=="admin_general": d["admins_general"].append(entry)
else: d["users"].append(entry)
_save_json(USERS_DB,d); return f"Added {rl}: {nm}"
def do_automatic_profile_creation(mic_audio_filepath):
if not mic_audio_filepath:
return "Please record a voice sample"
d = _load_users()
rl = "user" # Automatically create a user
uid = f"{rl}:{int(time.time())}"
nm = f"User{int(time.time())}"
entry = {"id": uid, "name": nm, "role": rl, "pass": "", # No password for auto-created users
"prefs": {"activation_names": [CFG["AGENT_NAME"]], "language": "en"}}
d["users"].append(entry)
_save_json(USERS_DB, d)
# Attempt voice enrollment for new user
success = enroll_voice(uid, mic_audio_filepath)
enroll_message = "Voice enrolled successfully!" if success else "Voice enrollment failed."
return f"Added {rl}: {nm}. {enroll_message}"
profile_creation_note = gr.Markdown("Profile will be created automatically when a voice sample is recorded.")
auto_mic = gr.Audio(sources=["microphone"], type="filepath", label="Record a voice sample to automatically create a user profile (non-admin).")
automatic_creation_button = gr.Button("Create profile")
automatic_out = gr.Markdown()
automatic_creation_button.click(
do_automatic_profile_creation,
[auto_mic],
[automatic_out]
)
add_btn.click(do_add, [mode_state, role_state, uid_state, add_name, add_role, add_pass], [out])
def do_rename(mode, role, caller, tgt, nm):
if not is_admin(mode, role): return "Switch to Admin mode to use this."
d=_load_users(); u,_=_find_user(d, tgt or "")
if not u: return "Target not found."
cu,_=_find_user(d, caller or "")
if not cu: return "Login first."
if u["role"] in PERMS.get(cu["role"],{}).get("can_edit_profile_of",[]):
u["name"]=nm; _save_json(USERS_DB,d); return "Renamed."
return "Not allowed."
rename_btn.click(do_rename,[mode_state, role_state, uid_state, target, new_name],[out])
def do_pass(mode, role, caller, tgt, pw):
if not is_admin(mode, role): return "Switch to Admin mode to use this."
d=_load_users(); u,_=_find_user(d, tgt or "")
if not u: return "Target not found."
cu,_=_find_user(d, caller or "")
if not cu: return "Login first."
if u["role"] in PERMS.get(cu["role"],{}).get("can_edit_profile_of",[]):
u["pass"]=pw; _save_json(USERS_DB,d); return "Password changed."
return "Not allowed."
pass_btn.click(do_pass,[mode_state, role_state, uid_state, target, new_pass],[out])
def do_role(mode, role, caller, tgt, rl):
if not is_admin(mode, role): return "Switch to Admin mode to use this."
d=_load_users(); u,_=_find_user(d, tgt or "")
if not u: return "Target not found."
cu,_=_find_user(d, caller or "");
if not cu: return "Login first."
allowed_new = {"owner":["owner","admin_super","admin_general","user"],
"admin_super":["admin_general","user"],
"admin_general":["admin_general","user"]}.get(cu["role"], [])
if u["role"] not in PERMS.get(cu["role"],{}).get("can_edit_role_of",[]) or rl not in allowed_new:
return f"Not allowed to set {rl}."
for grp in ["admins_super","admins_general","users"]:
d[grp]=[x for x in d[grp] if x["id"]!=u["id"]]
if rl=="owner": d["owner"]=u; u["role"]="owner"
elif rl=="admin_super": d["admins_super"].append(u); u["role"]="admin_super"
elif rl=="admin_general": d["admins_general"].append(u); u["role"]="admin_general"
else: d["users"].append(u); u["role"]="user"
_save_json(USERS_DB,d); return f"Role set to {rl}."
role_btn.click(do_role,[mode_state, role_state, uid_state, target, new_role],[out])
# ------ Internal Optimization controls (Owner-gated) ------
gr.Markdown("### Internal Optimization (Change Manager)")
prop_kind=gr.Dropdown(choices=["model","package","code"], value="model", label="Proposal type")
prop_name=gr.Textbox(label="Model ID / Package Name")
prop_ver=gr.Textbox(label="Package version (optional)")
prop_reason=gr.Textbox(label="Why this change?")
prop_patch=gr.Code(label="Code patch (for 'code' proposals): paste full replacement or diff")
propose_btn=gr.Button("Propose"); test_btn=gr.Button("Test in sandbox"); apply_btn=gr.Button("Apply (policy-checked)")
opt_out=gr.JSON()
_last: Dict[str, any] = {"id": None, "obj": None}
def do_propose(kind,name,ver,reason,patch):
hive_instance = get_hive_instance()
cp=ChangeProposal(kind=kind,name=name or "",version=ver or "",reason=reason or "",patch_text=patch or "")
pid=hive_instance.changes.propose(cp); _last["id"]=pid; _last["obj"]=cp
return f"Proposed {kind}: {name or '(code patch)'} (id:{pid})"
def do_test():
if not _last["obj"]: return "No proposal in memory. Submit one first."
res=get_hive_instance().changes.test_and_compare(str(_last["id"]), _last["obj"]); return res # type: ignore
def do_apply(role, mode):
hive_instance = get_hive_instance()
if role not in ("admin_super","owner") or mode!="admin": return "Only admin_super or owner may apply."
if not _last["obj"]: return "No proposal loaded."
res=hive_instance.changes.test_and_compare(str(_last["id"]), _last["obj"])
if not res.get("ok"): return f"Test failed: {res.get('reason','unknown')}"
if _last["obj"].kind=="code" and role!="owner" and not CFG["OPT_AUTO_APPLY"]: return "Awaiting Owner approval for code changes." # type: ignore
ok,msg=hive_instance.changes.apply(res); return msg if ok else f"Apply failed: {msg}"
propose_btn.click(do_propose, [prop_kind,prop_name,prop_ver,prop_reason,prop_patch],[opt_out])
hotpatch_apply.click(do_hotpatch,[hotpatch_patch],[hotpatch_status])
test_btn.click(lambda: do_test(), [], [opt_out])
apply_btn.click(do_apply, [role_state, mode_state], [opt_out])
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", "7860")), share=False)
class Bootstrap:
"""Handles the entire application startup sequence cleanly."""
def __init__(self, config: Dict):
self.config = config
self.caps: Optional[Dict] = None
self.hive_instance: Optional[Hive] = None
self.hive_lite_instance: Optional[Hive] = None
self.hive_ready = threading.Event()
def run(self):
"""Executes the full startup sequence."""
print("[Bootstrap] Starting Hive System...")
self.caps = probe_caps()
print(f"[Bootstrap] System capabilities: {self.caps}")
# Create a 'lite' instance immediately for basic chat
print("[Bootstrap] Initializing Lite Hive core...")
self.hive_lite_instance = Hive(lite=True)
print("[Bootstrap] Lite Hive core is ready.")
# Launch UI immediately, it will wait for the hive_ready event
ui_thread = threading.Thread(target=self.launch, daemon=True)
ui_thread.start()
print("[Bootstrap] Initializing Hive core in background...")
# Now initialize the full instance. This is the slow part.
self.hive_instance = Hive(lite=False)
self.hive_ready.set() # Signal that the Hive instance is ready
print("[Bootstrap] Hive core is ready.")
self.setup_memory()
ui_thread.join() # Keep main thread alive
def setup_memory(self):
"""Handles memory restoration and staged ingestion."""
def _memory_task():
print("[Bootstrap] Starting background memory setup...")
try:
ok_restored, restore_msg = restore_curves_if_missing(str(self.config["CURVE_DIR"]))
with open(os.path.join(self.config["STATE_DIR"], "restore_status.log"), "a", encoding="utf-8") as f:
f.write(json.dumps({"ok":bool(ok_restored),"msg":restore_msg,"ts":time.time()})+"\n")
if ok_restored:
print(f"[Bootstrap] Memory restore status: {restore_msg}")
else:
print("[Bootstrap] No memory restored, proceeding to staged ingestion in background...")
staged_ingest_chain_if_enabled(str(self.config["CURVE_DIR"]))
except Exception as e:
with open(os.path.join(self.config["STATE_DIR"], "restore_error.log"), "a", encoding="utf-8") as f:
f.write(f"restore/ingest: {e}\n")
# Run the memory setup in a background thread to not block the UI
threading.Thread(target=_memory_task, daemon=True).start()
def launch(self):
"""Launches the appropriate interface (UI or CLI)."""
if self.config["LAUNCH_UI"]:
print("[Bootstrap] Launching Web UI...")
launch_ui(self)
else:
print("[Bootstrap] Launching CLI...")
self.run_cli_loop()
def run_cli_loop(self):
"""Runs a command-line interface loop for Hive. Waits for full init."""
self.hive_ready.wait()
print("Hive is ready. Type a message and press Enter (Ctrl+C to exit).")
try:
while True:
s = input("> ").strip()
if not s: continue
reply = self.hive_instance.chat(s, effective_role="user", caller_id="cli") # type: ignore
print(reply)
except (KeyboardInterrupt, EOFError):
print("\nExiting Hive CLI.")
pass
# ----------- entry -----------
if __name__=="__main__":
bootstrap = Bootstrap(CFG)
bootstrap.run() |