Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
# streamlit_app.py
|
| 2 |
-
#
|
| 3 |
import streamlit as st
|
| 4 |
import re
|
| 5 |
from sympy import symbols, integrate, exp, pi
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
import torch
|
| 8 |
|
| 9 |
-
st.set_page_config(page_title="AI
|
| 10 |
|
| 11 |
x, t = symbols("x t")
|
| 12 |
|
| 13 |
def extract_integral(problem_text):
|
| 14 |
match = re.search(r'(\d+)\*?[tx]\^(\d+)', problem_text)
|
| 15 |
-
limits = re.findall(r'[tx]\s*=\s*([\d
|
| 16 |
exp_match = re.search(r'(\d+)e\^([\-\+]?\d+\.?\d*)[tx]', problem_text)
|
| 17 |
|
| 18 |
if 'radioactive' in problem_text or 'half-life' in problem_text:
|
|
@@ -35,61 +35,61 @@ def extract_integral(problem_text):
|
|
| 35 |
return "Could not parse the integral format."
|
| 36 |
|
| 37 |
@st.cache_resource
|
| 38 |
-
def
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
)
|
| 48 |
-
else:
|
| 49 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 50 |
|
| 51 |
return tokenizer, model
|
| 52 |
|
| 53 |
-
def
|
| 54 |
-
tokenizer, model =
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
4. Clearly present the final answer.
|
| 61 |
|
| 62 |
### Final Answer Format:
|
| 63 |
Final Answer: [VARIABLE] = [ANSWER] [UNIT]
|
| 64 |
-
"""
|
| 65 |
-
prompt = f"Q: Solve the following physics problem using rigorous mathematical reasoning. Do not skip any steps.\n\nProblem: {user_question}\n\n{solution_steps}\nA:"
|
| 66 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 67 |
|
| 68 |
-
|
| 69 |
-
if torch.cuda.is_available():
|
| 70 |
-
inputs = inputs.to("cuda")
|
| 71 |
|
| 72 |
with torch.no_grad():
|
| 73 |
outputs = model.generate(
|
| 74 |
**inputs,
|
| 75 |
max_new_tokens=500,
|
| 76 |
-
temperature=0.
|
| 77 |
repetition_penalty=1.0,
|
| 78 |
eos_token_id=tokenizer.eos_token_id,
|
| 79 |
pad_token_id=tokenizer.eos_token_id
|
| 80 |
)
|
|
|
|
| 81 |
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("A:")[-1].strip()
|
| 82 |
|
| 83 |
-
# ---------------- UI
|
| 84 |
-
st.title("🧠 AI
|
| 85 |
|
| 86 |
-
task_type = st.selectbox("Choose Task Type", ["LLM Reasoning (DeepSeek)", "Symbolic Integration"])
|
| 87 |
user_question = st.text_area("Enter your physics or math question below:")
|
| 88 |
|
| 89 |
if st.button("Solve"):
|
| 90 |
with st.spinner("Solving..."):
|
| 91 |
-
if task_type == "LLM Reasoning (DeepSeek)":
|
| 92 |
-
result =
|
| 93 |
else:
|
| 94 |
result = extract_integral(user_question)
|
| 95 |
|
|
|
|
| 1 |
# streamlit_app.py
|
| 2 |
+
# streamlit_app.py
|
| 3 |
import streamlit as st
|
| 4 |
import re
|
| 5 |
from sympy import symbols, integrate, exp, pi
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
import torch
|
| 8 |
|
| 9 |
+
st.set_page_config(page_title="AI Problem Solver By Mathematically Modelling", page_icon="🧠")
|
| 10 |
|
| 11 |
x, t = symbols("x t")
|
| 12 |
|
| 13 |
def extract_integral(problem_text):
|
| 14 |
match = re.search(r'(\d+)\*?[tx]\^(\d+)', problem_text)
|
| 15 |
+
limits = re.findall(r'[tx]\s*=\s*([\d\.\w]+)', problem_text)
|
| 16 |
exp_match = re.search(r'(\d+)e\^([\-\+]?\d+\.?\d*)[tx]', problem_text)
|
| 17 |
|
| 18 |
if 'radioactive' in problem_text or 'half-life' in problem_text:
|
|
|
|
| 35 |
return "Could not parse the integral format."
|
| 36 |
|
| 37 |
@st.cache_resource
|
| 38 |
+
def load_model():
|
| 39 |
+
# Change this if you want to fallback to a smaller model on CPU
|
| 40 |
+
use_light_model = not torch.cuda.is_available()
|
| 41 |
+
|
| 42 |
+
model_name = (
|
| 43 |
+
"deepseek-ai/deepseek-math-7b-base" if not use_light_model
|
| 44 |
+
else "tiiuae/falcon-7b-instruct"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 48 |
|
| 49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
+
model_name,
|
| 51 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 52 |
+
device_map="auto" if torch.cuda.is_available() else None
|
| 53 |
+
)
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
return tokenizer, model
|
| 56 |
|
| 57 |
+
def run_llm_reasoning(user_question):
|
| 58 |
+
tokenizer, model = load_model()
|
| 59 |
+
|
| 60 |
+
prompt = f"""
|
| 61 |
+
Q: Solve the following physics problem using rigorous mathematical reasoning. Do not skip any steps.
|
| 62 |
+
|
| 63 |
+
Problem: {user_question}
|
|
|
|
| 64 |
|
| 65 |
### Final Answer Format:
|
| 66 |
Final Answer: [VARIABLE] = [ANSWER] [UNIT]
|
| 67 |
+
A:"""
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
| 70 |
|
| 71 |
with torch.no_grad():
|
| 72 |
outputs = model.generate(
|
| 73 |
**inputs,
|
| 74 |
max_new_tokens=500,
|
| 75 |
+
temperature=0.2,
|
| 76 |
repetition_penalty=1.0,
|
| 77 |
eos_token_id=tokenizer.eos_token_id,
|
| 78 |
pad_token_id=tokenizer.eos_token_id
|
| 79 |
)
|
| 80 |
+
|
| 81 |
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("A:")[-1].strip()
|
| 82 |
|
| 83 |
+
# ---------------- UI ----------------
|
| 84 |
+
st.title("🧠 AI Physics & Math Solver")
|
| 85 |
|
| 86 |
+
task_type = st.selectbox("Choose Task Type", ["LLM Reasoning (DeepSeek/Fallback)", "Symbolic Integration"])
|
| 87 |
user_question = st.text_area("Enter your physics or math question below:")
|
| 88 |
|
| 89 |
if st.button("Solve"):
|
| 90 |
with st.spinner("Solving..."):
|
| 91 |
+
if task_type == "LLM Reasoning (DeepSeek/Fallback)":
|
| 92 |
+
result = run_llm_reasoning(user_question)
|
| 93 |
else:
|
| 94 |
result = extract_integral(user_question)
|
| 95 |
|