Commit
·
a097df3
1
Parent(s):
bf08f52
Refactor to use local model inference for next token prediction and enhance token display functionality
Browse files- app.py +182 -149
- requirements.txt +5 -1
app.py
CHANGED
|
@@ -1,19 +1,24 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import requests
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import time
|
|
|
|
| 6 |
from typing import List, Dict, Tuple
|
| 7 |
from dotenv import load_dotenv
|
|
|
|
| 8 |
|
| 9 |
# Load environment variables from .env file
|
| 10 |
load_dotenv()
|
| 11 |
|
| 12 |
# Configuration
|
| 13 |
-
API_BASE = "https://router.huggingface.co/v1/"
|
| 14 |
MODEL_ID = "Qwen/Qwen3-0.6B"
|
| 15 |
HF_TOKEN = os.getenv('HF_NEXT_TOKEN_PREDICTOR_TOKEN', '')
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def show_token(token: str) -> str:
|
| 18 |
"""Format token for display"""
|
| 19 |
if token == "\n":
|
|
@@ -22,152 +27,96 @@ def show_token(token: str) -> str:
|
|
| 22 |
return f"␣{'' if len(token) == 1 else '×' + str(len(token))}"
|
| 23 |
return token
|
| 24 |
|
| 25 |
-
def predict_next_token(text: str, top_k: int = 10,
|
| 26 |
-
"""Predict next tokens using
|
| 27 |
-
|
| 28 |
-
if not HF_TOKEN:
|
| 29 |
-
return "❌ No HF_NEXT_TOKEN_PREDICTOR_TOKEN found in environment variables", ""
|
| 30 |
|
| 31 |
if not text.strip():
|
| 32 |
-
return "Please enter some text to predict from"
|
| 33 |
|
| 34 |
start_time = time.time()
|
| 35 |
|
| 36 |
try:
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
'max_new_tokens': 1,
|
| 48 |
-
'temperature': 0.0,
|
| 49 |
-
'do_sample': False,
|
| 50 |
-
'return_full_text': False
|
| 51 |
-
}
|
| 52 |
-
}
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
if not response.ok:
|
| 60 |
-
print(f"Response text: {response.text}")
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
else:
|
| 73 |
-
print(f"Fallback also failed: {fallback_response.text[:100]}")
|
| 74 |
-
|
| 75 |
-
# If still not ok after fallback attempt
|
| 76 |
-
if not response.ok:
|
| 77 |
-
error_msg = f"API Error: {response.status_code} for model {MODEL_ID}"
|
| 78 |
-
try:
|
| 79 |
-
error_detail = response.json()
|
| 80 |
-
if 'error' in error_detail:
|
| 81 |
-
error_msg += f" - {error_detail['error']}"
|
| 82 |
-
except:
|
| 83 |
-
error_msg += f" - {response.text[:200]}"
|
| 84 |
-
return error_msg, ""
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
return
|
| 102 |
|
| 103 |
-
except requests.exceptions.Timeout:
|
| 104 |
-
return "❌ API request timed out. The model might be loading - try again in a moment.", ""
|
| 105 |
-
except requests.exceptions.RequestException as e:
|
| 106 |
-
return f"❌ Network error: {str(e)}", ""
|
| 107 |
except Exception as e:
|
| 108 |
-
return f"❌ Error: {str(e)}"
|
| 109 |
|
| 110 |
-
def
|
| 111 |
-
"""Create HTML display
|
| 112 |
-
|
| 113 |
-
# Create HTML for single token
|
| 114 |
-
html = """
|
| 115 |
-
<div style="font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace; background: #0e162b; border: 1px solid #1c2945; border-radius: 14px; padding: 12px;">
|
| 116 |
-
"""
|
| 117 |
-
|
| 118 |
-
token_display = show_token(predicted_word)
|
| 119 |
-
|
| 120 |
-
html += f"""
|
| 121 |
-
<div style="display: grid; grid-template-columns: 1fr auto; gap: 8px; align-items: center; padding: 8px 10px; margin: 4px 0; border-radius: 10px; background: #0f1930; border: 1px solid #22365e; cursor: pointer;">
|
| 122 |
-
<div style="color: #e6f1ff; font-size: 14px;">{token_display}</div>
|
| 123 |
-
<div style="color: #9ab0d0; font-size: 12px;">Predicted</div>
|
| 124 |
-
</div>
|
| 125 |
-
"""
|
| 126 |
-
|
| 127 |
-
html += "</div>"
|
| 128 |
-
return html
|
| 129 |
-
|
| 130 |
-
def create_token_display(api_result: dict, top_k: int, hide_punctuation: bool) -> str:
|
| 131 |
-
"""Create HTML display for predicted tokens"""
|
| 132 |
-
|
| 133 |
-
# For demo purposes, create some example predictions
|
| 134 |
-
# In a real implementation, you'd parse the API response properly
|
| 135 |
-
demo_tokens = [
|
| 136 |
-
{"token": "star", "prob": 0.35},
|
| 137 |
-
{"token": "light", "prob": 0.25},
|
| 138 |
-
{"token": "night", "prob": 0.15},
|
| 139 |
-
{"token": "sky", "prob": 0.10},
|
| 140 |
-
{"token": "bright", "prob": 0.08},
|
| 141 |
-
{"token": "moon", "prob": 0.04},
|
| 142 |
-
{"token": "sun", "prob": 0.03}
|
| 143 |
-
]
|
| 144 |
-
|
| 145 |
-
# Filter punctuation if requested
|
| 146 |
-
if hide_punctuation:
|
| 147 |
-
import re
|
| 148 |
-
PUNC_ONLY = re.compile(r'^[\s.,;:!?—-]+$')
|
| 149 |
-
demo_tokens = [t for t in demo_tokens if not PUNC_ONLY.match(t['token'])]
|
| 150 |
-
|
| 151 |
-
# Take only top_k
|
| 152 |
-
tokens = demo_tokens[:top_k]
|
| 153 |
|
| 154 |
-
# Create HTML
|
| 155 |
html = """
|
| 156 |
-
<div style="font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace; background: #0e162b; border: 1px solid #1c2945; border-radius: 14px; padding: 12px;">
|
| 157 |
"""
|
| 158 |
|
| 159 |
-
for
|
| 160 |
-
token_display = show_token(
|
| 161 |
-
percentage = f"{
|
| 162 |
|
| 163 |
html += f"""
|
| 164 |
-
<div
|
|
|
|
|
|
|
|
|
|
| 165 |
<div style="color: #e6f1ff; font-size: 14px;">{token_display}</div>
|
| 166 |
<div style="color: #9ab0d0; font-size: 12px;">{percentage}</div>
|
| 167 |
</div>
|
| 168 |
"""
|
| 169 |
|
| 170 |
-
html += "
|
|
|
|
|
|
|
|
|
|
| 171 |
return html
|
| 172 |
|
| 173 |
# Custom CSS to match the original design
|
|
@@ -187,6 +136,37 @@ custom_css = """
|
|
| 187 |
background: #0e1629 !important;
|
| 188 |
border: 1px solid #1c2945 !important;
|
| 189 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
"""
|
| 191 |
|
| 192 |
# Create Gradio interface
|
|
@@ -194,17 +174,10 @@ with gr.Blocks(css=custom_css, title="Next-Token Predictor") as app:
|
|
| 194 |
gr.HTML("""
|
| 195 |
<div style="text-align: center; padding: 20px; background: #0e1629; border-bottom: 1px solid #1c2945;">
|
| 196 |
<h1 style="color: #e6f1ff; margin: 0; font-size: 24px;">🤗 Next-Token Predictor</h1>
|
| 197 |
-
<p style="color: #9ab0d0; margin: 10px 0 0 0;">Explore how AI predicts the next word!
|
| 198 |
</div>
|
| 199 |
""")
|
| 200 |
|
| 201 |
-
if not HF_TOKEN:
|
| 202 |
-
gr.HTML("""
|
| 203 |
-
<div style="background: #ffb4c0; color: #000; padding: 10px; border-radius: 8px; margin: 10px;">
|
| 204 |
-
⚠️ <strong>HF_NEXT_TOKEN_PREDICTOR_TOKEN not found!</strong> Please set your Hugging Face token as an environment variable or Space secret.
|
| 205 |
-
</div>
|
| 206 |
-
""")
|
| 207 |
-
|
| 208 |
with gr.Row():
|
| 209 |
with gr.Column(scale=1):
|
| 210 |
text_input = gr.Textbox(
|
|
@@ -218,41 +191,101 @@ with gr.Blocks(css=custom_css, title="Next-Token Predictor") as app:
|
|
| 218 |
with gr.Row():
|
| 219 |
top_k = gr.Slider(
|
| 220 |
minimum=5,
|
| 221 |
-
maximum=
|
| 222 |
value=10,
|
| 223 |
step=1,
|
| 224 |
-
label="Top-K
|
| 225 |
-
info="How many predictions to show"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
)
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
)
|
| 232 |
|
| 233 |
timing_info = gr.HTML(value="<div style='color: #9ab0d0; font-size: 12px;'>✨ Predictions update as you type!</div>")
|
| 234 |
|
| 235 |
with gr.Column(scale=1):
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
-
#
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
# Auto-predict on any input change
|
| 244 |
-
|
|
|
|
| 245 |
component.change(
|
| 246 |
-
|
| 247 |
-
inputs=[text_input, top_k,
|
| 248 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
)
|
| 250 |
|
| 251 |
# Load initial predictions on app start
|
| 252 |
app.load(
|
| 253 |
-
lambda:
|
| 254 |
-
outputs=
|
| 255 |
)
|
| 256 |
|
| 257 |
if __name__ == "__main__":
|
| 258 |
-
app.launch(share=False
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import time
|
| 5 |
+
import torch
|
| 6 |
from typing import List, Dict, Tuple
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
|
| 10 |
# Load environment variables from .env file
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
# Configuration
|
|
|
|
| 14 |
MODEL_ID = "Qwen/Qwen3-0.6B"
|
| 15 |
HF_TOKEN = os.getenv('HF_NEXT_TOKEN_PREDICTOR_TOKEN', '')
|
| 16 |
|
| 17 |
+
# Initialize model and tokenizer (local inference like the working app)
|
| 18 |
+
print("Loading model and tokenizer...")
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
|
| 21 |
+
|
| 22 |
def show_token(token: str) -> str:
|
| 23 |
"""Format token for display"""
|
| 24 |
if token == "\n":
|
|
|
|
| 27 |
return f"␣{'' if len(token) == 1 else '×' + str(len(token))}"
|
| 28 |
return token
|
| 29 |
|
| 30 |
+
def predict_next_token(text: str, top_k: int = 10, temperature: float = 1.0, top_p: float = 0.9) -> Tuple[List[Dict], str]:
|
| 31 |
+
"""Predict next tokens using local model with temperature and top-p filtering"""
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
if not text.strip():
|
| 34 |
+
return [], "Please enter some text to predict from"
|
| 35 |
|
| 36 |
start_time = time.time()
|
| 37 |
|
| 38 |
try:
|
| 39 |
+
# Use local model inference
|
| 40 |
+
tokens = tokenizer(text, return_tensors="pt", padding=False)
|
| 41 |
+
out = model.generate(
|
| 42 |
+
**tokens,
|
| 43 |
+
max_new_tokens=1,
|
| 44 |
+
output_scores=True,
|
| 45 |
+
return_dict_in_generate=True,
|
| 46 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 47 |
+
do_sample=False,
|
| 48 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# Get raw logits and apply temperature scaling
|
| 51 |
+
logits = out.scores[0]
|
| 52 |
+
scaled_logits = logits / temperature
|
| 53 |
+
scores = torch.softmax(scaled_logits, dim=-1)
|
| 54 |
|
| 55 |
+
# Apply top-p filtering (nucleus sampling)
|
| 56 |
+
sorted_probs, sorted_indices = torch.sort(scores, descending=True)
|
| 57 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# Find the cutoff point for top-p
|
| 60 |
+
cutoff_index = torch.where(cumulative_probs >= top_p)[1]
|
| 61 |
+
if len(cutoff_index) > 0:
|
| 62 |
+
cutoff = cutoff_index[0].item() + 1
|
| 63 |
+
top_p_indices = sorted_indices[0, :cutoff]
|
| 64 |
+
top_p_probs = sorted_probs[0, :cutoff]
|
| 65 |
+
else:
|
| 66 |
+
# Fallback if top_p is very low
|
| 67 |
+
top_p_indices = sorted_indices[0, :min(50, len(sorted_indices[0]))]
|
| 68 |
+
top_p_probs = sorted_probs[0, :min(50, len(sorted_probs[0]))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
# Apply top-k to the top-p filtered results
|
| 71 |
+
final_k = min(top_k, len(top_p_indices))
|
| 72 |
+
final_indices = top_p_indices[:final_k]
|
| 73 |
+
final_probs = top_p_probs[:final_k]
|
| 74 |
|
| 75 |
+
# Convert to tokens
|
| 76 |
+
token_ids = [int(idx) for idx in final_indices]
|
| 77 |
+
probs = [float(prob) for prob in final_probs]
|
| 78 |
+
tokens_text = [tokenizer.decode([tid]) for tid in token_ids]
|
| 79 |
+
|
| 80 |
+
# Create token data structure
|
| 81 |
+
tokens_data = []
|
| 82 |
+
for i in range(len(token_ids)):
|
| 83 |
+
tokens_data.append({
|
| 84 |
+
"token": tokens_text[i],
|
| 85 |
+
"prob": probs[i]
|
| 86 |
+
})
|
| 87 |
+
|
| 88 |
+
prediction_time = int((time.time() - start_time) * 1000)
|
| 89 |
|
| 90 |
+
return tokens_data, f"Prediction time: {prediction_time}ms"
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
except Exception as e:
|
| 93 |
+
return [], f"❌ Error: {str(e)}"
|
| 94 |
|
| 95 |
+
def create_clickable_token_display(tokens_data: List[Dict]) -> str:
|
| 96 |
+
"""Create HTML display with clickable tokens - simplified without JavaScript"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
|
|
|
| 98 |
html = """
|
| 99 |
+
<div id="token-predictions" style="font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace; background: #0e162b; border: 1px solid #1c2945; border-radius: 14px; padding: 12px;">
|
| 100 |
"""
|
| 101 |
|
| 102 |
+
for i, token_data in enumerate(tokens_data):
|
| 103 |
+
token_display = show_token(token_data['token'])
|
| 104 |
+
percentage = f"{token_data['prob'] * 100:.2f}%"
|
| 105 |
|
| 106 |
html += f"""
|
| 107 |
+
<div class="token-prediction" data-token="{token_data['token']}"
|
| 108 |
+
style="display: grid; grid-template-columns: 1fr auto; gap: 8px; align-items: center; padding: 8px 10px; margin: 4px 0; border-radius: 10px; background: #0f1930; border: 1px solid #22365e; cursor: pointer; transition: background 0.2s;"
|
| 109 |
+
onmouseover="this.style.background='#1a2b4a'"
|
| 110 |
+
onmouseout="this.style.background='#0f1930'">
|
| 111 |
<div style="color: #e6f1ff; font-size: 14px;">{token_display}</div>
|
| 112 |
<div style="color: #9ab0d0; font-size: 12px;">{percentage}</div>
|
| 113 |
</div>
|
| 114 |
"""
|
| 115 |
|
| 116 |
+
html += """
|
| 117 |
+
</div>
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
return html
|
| 121 |
|
| 122 |
# Custom CSS to match the original design
|
|
|
|
| 136 |
background: #0e1629 !important;
|
| 137 |
border: 1px solid #1c2945 !important;
|
| 138 |
}
|
| 139 |
+
|
| 140 |
+
.token-button {
|
| 141 |
+
background: #0f1930 !important;
|
| 142 |
+
border: 1px solid #22365e !important;
|
| 143 |
+
color: #e6f1ff !important;
|
| 144 |
+
border-radius: 6px !important;
|
| 145 |
+
margin: 0px !important;
|
| 146 |
+
padding: 2px 6px !important;
|
| 147 |
+
font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace !important;
|
| 148 |
+
transition: background 0.2s !important;
|
| 149 |
+
font-size: 12px !important;
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
.token-button:hover {
|
| 153 |
+
background: #1a2b4a !important;
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
/* Remove Gradio's default spacing between buttons */
|
| 157 |
+
.token-button + .token-button {
|
| 158 |
+
margin-top: 0px !important;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
/* Remove gaps in the column containing buttons */
|
| 162 |
+
div:has(> .token-button) {
|
| 163 |
+
gap: 0px !important;
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
/* Target Gradio's automatic spacing */
|
| 167 |
+
.block > div > div {
|
| 168 |
+
gap: 0px !important;
|
| 169 |
+
}
|
| 170 |
"""
|
| 171 |
|
| 172 |
# Create Gradio interface
|
|
|
|
| 174 |
gr.HTML("""
|
| 175 |
<div style="text-align: center; padding: 20px; background: #0e1629; border-bottom: 1px solid #1c2945;">
|
| 176 |
<h1 style="color: #e6f1ff; margin: 0; font-size: 24px;">🤗 Next-Token Predictor</h1>
|
| 177 |
+
<p style="color: #9ab0d0; margin: 10px 0 0 0;">Explore how AI predicts the next word! Click on predictions to append them.</p>
|
| 178 |
</div>
|
| 179 |
""")
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
with gr.Row():
|
| 182 |
with gr.Column(scale=1):
|
| 183 |
text_input = gr.Textbox(
|
|
|
|
| 191 |
with gr.Row():
|
| 192 |
top_k = gr.Slider(
|
| 193 |
minimum=5,
|
| 194 |
+
maximum=15,
|
| 195 |
value=10,
|
| 196 |
step=1,
|
| 197 |
+
label="Top-K",
|
| 198 |
+
info="How many top predictions to show",
|
| 199 |
+
show_label=True,
|
| 200 |
+
interactive=True
|
| 201 |
+
)
|
| 202 |
+
temperature = gr.Slider(
|
| 203 |
+
minimum=0.1,
|
| 204 |
+
maximum=2.0,
|
| 205 |
+
value=1.0,
|
| 206 |
+
step=0.1,
|
| 207 |
+
label="Temperature",
|
| 208 |
+
info="Creativity: Low=predictable, High=surprising",
|
| 209 |
+
show_label=True,
|
| 210 |
+
interactive=True
|
| 211 |
)
|
| 212 |
+
top_p = gr.Slider(
|
| 213 |
+
minimum=0.1,
|
| 214 |
+
maximum=1.0,
|
| 215 |
+
value=0.9,
|
| 216 |
+
step=0.05,
|
| 217 |
+
label="Top-P",
|
| 218 |
+
info="Consider words making up this % of probability",
|
| 219 |
+
show_label=True,
|
| 220 |
+
interactive=True
|
| 221 |
)
|
| 222 |
|
| 223 |
timing_info = gr.HTML(value="<div style='color: #9ab0d0; font-size: 12px;'>✨ Predictions update as you type!</div>")
|
| 224 |
|
| 225 |
with gr.Column(scale=1):
|
| 226 |
+
# Create a column for token buttons
|
| 227 |
+
with gr.Column():
|
| 228 |
+
gr.HTML("<h4 style='color: #e6f1ff; margin: 0;'>🔮 Next Token Predictions</h4>")
|
| 229 |
+
|
| 230 |
+
# Create buttons for each possible token (we'll show/hide as needed)
|
| 231 |
+
token_buttons = []
|
| 232 |
+
for i in range(15): # Support up to 15 tokens
|
| 233 |
+
btn = gr.Button(
|
| 234 |
+
value="",
|
| 235 |
+
visible=False,
|
| 236 |
+
elem_classes=["token-button"],
|
| 237 |
+
size="sm"
|
| 238 |
+
)
|
| 239 |
+
token_buttons.append(btn)
|
| 240 |
|
| 241 |
+
# Store current tokens data
|
| 242 |
+
current_tokens = gr.State([])
|
| 243 |
+
|
| 244 |
+
def update_predictions_and_buttons(text, k, temp, p):
|
| 245 |
+
tokens_data, timing = predict_next_token(text, int(k), float(temp), float(p))
|
| 246 |
+
|
| 247 |
+
# Update button states
|
| 248 |
+
button_updates = []
|
| 249 |
+
for i in range(15):
|
| 250 |
+
if i < len(tokens_data):
|
| 251 |
+
token = tokens_data[i]['token']
|
| 252 |
+
prob = tokens_data[i]['prob']
|
| 253 |
+
display_token = show_token(token)
|
| 254 |
+
button_label = f"{display_token} ({prob*100:.1f}%)"
|
| 255 |
+
button_updates.append(gr.Button(value=button_label, visible=True))
|
| 256 |
+
else:
|
| 257 |
+
button_updates.append(gr.Button(visible=False))
|
| 258 |
+
|
| 259 |
+
return [timing, tokens_data] + button_updates
|
| 260 |
+
|
| 261 |
+
def append_token_to_input(current_text, tokens_data, button_index):
|
| 262 |
+
if tokens_data and 0 <= button_index < len(tokens_data):
|
| 263 |
+
token = tokens_data[button_index]['token']
|
| 264 |
+
return current_text + token
|
| 265 |
+
return current_text
|
| 266 |
|
| 267 |
# Auto-predict on any input change
|
| 268 |
+
outputs = [timing_info, current_tokens] + token_buttons
|
| 269 |
+
for component in [text_input, top_k, temperature, top_p]:
|
| 270 |
component.change(
|
| 271 |
+
update_predictions_and_buttons,
|
| 272 |
+
inputs=[text_input, top_k, temperature, top_p],
|
| 273 |
+
outputs=outputs
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# Set up click handlers for each token button
|
| 277 |
+
for i, btn in enumerate(token_buttons):
|
| 278 |
+
btn.click(
|
| 279 |
+
lambda text, tokens, idx=i: append_token_to_input(text, tokens, idx),
|
| 280 |
+
inputs=[text_input, current_tokens],
|
| 281 |
+
outputs=[text_input]
|
| 282 |
)
|
| 283 |
|
| 284 |
# Load initial predictions on app start
|
| 285 |
app.load(
|
| 286 |
+
lambda: update_predictions_and_buttons("Twinkle, twinkle, little ", 10, 1.0, 0.9),
|
| 287 |
+
outputs=outputs
|
| 288 |
)
|
| 289 |
|
| 290 |
if __name__ == "__main__":
|
| 291 |
+
app.launch(share=False)
|
requirements.txt
CHANGED
|
@@ -1,3 +1,7 @@
|
|
| 1 |
gradio==4.44.1
|
| 2 |
requests==2.31.0
|
| 3 |
-
python-dotenv==1.0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio==4.44.1
|
| 2 |
requests==2.31.0
|
| 3 |
+
python-dotenv==1.0.0
|
| 4 |
+
transformers
|
| 5 |
+
torch
|
| 6 |
+
anywidget
|
| 7 |
+
traitlets
|