Update app.py
Browse files
app.py
CHANGED
|
@@ -7,10 +7,12 @@ import os
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import json
|
| 9 |
import io
|
|
|
|
| 10 |
|
| 11 |
# Variables globales pour stocker les colonnes détectées
|
| 12 |
columns = []
|
| 13 |
|
|
|
|
| 14 |
# Fonction pour lire le fichier et détecter les colonnes
|
| 15 |
def read_file(data_file):
|
| 16 |
global columns
|
|
@@ -25,16 +27,28 @@ def read_file(data_file):
|
|
| 25 |
df = pd.read_excel(data_file.name)
|
| 26 |
else:
|
| 27 |
return "Invalid file format. Please upload a CSV, JSON, or Excel file."
|
| 28 |
-
|
| 29 |
# Détecter les colonnes
|
| 30 |
columns = df.columns.tolist()
|
| 31 |
return columns
|
| 32 |
except Exception as e:
|
| 33 |
return f"An error occurred: {str(e)}"
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Fonction pour entraîner le modèle
|
| 36 |
def train_model(data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col):
|
| 37 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# Charger les données
|
| 39 |
file_extension = os.path.splitext(data_file.name)[1]
|
| 40 |
if file_extension == '.csv':
|
|
@@ -43,31 +57,31 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
| 43 |
df = pd.read_json(data_file.name)
|
| 44 |
elif file_extension == '.xlsx':
|
| 45 |
df = pd.read_excel(data_file.name)
|
| 46 |
-
|
| 47 |
# Prévisualisation des données
|
| 48 |
preview = df.head().to_string(index=False)
|
| 49 |
-
|
| 50 |
# Préparer le texte d'entraînement
|
| 51 |
df['text'] = df[prompt_col] + ': ' + df[description_col]
|
| 52 |
dataset = Dataset.from_pandas(df[['text']])
|
| 53 |
-
|
| 54 |
# Initialiser le tokenizer et le modèle GPT-2
|
| 55 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 56 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 57 |
-
|
| 58 |
# Ajouter un token de padding si nécessaire
|
| 59 |
if tokenizer.pad_token is None:
|
| 60 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 61 |
model.resize_token_embeddings(len(tokenizer))
|
| 62 |
-
|
| 63 |
# Tokenizer les données
|
| 64 |
def tokenize_function(examples):
|
| 65 |
tokens = tokenizer(examples['text'], padding="max_length", truncation=True, max_length=128)
|
| 66 |
tokens['labels'] = tokens['input_ids'].copy()
|
| 67 |
return tokens
|
| 68 |
-
|
| 69 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 70 |
-
|
| 71 |
# Ajustement des hyperparamètres
|
| 72 |
training_args = TrainingArguments(
|
| 73 |
output_dir=output_dir,
|
|
@@ -87,7 +101,7 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
| 87 |
load_best_model_at_end=True,
|
| 88 |
metric_for_best_model="eval_loss"
|
| 89 |
)
|
| 90 |
-
|
| 91 |
# Configuration du Trainer
|
| 92 |
trainer = Trainer(
|
| 93 |
model=model,
|
|
@@ -95,15 +109,15 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
| 95 |
train_dataset=tokenized_datasets,
|
| 96 |
eval_dataset=tokenized_datasets,
|
| 97 |
)
|
| 98 |
-
|
| 99 |
# Entraînement et évaluation
|
| 100 |
trainer.train()
|
| 101 |
eval_results = trainer.evaluate()
|
| 102 |
-
|
| 103 |
# Sauvegarder le modèle fine-tuné
|
| 104 |
model.save_pretrained(output_dir)
|
| 105 |
tokenizer.save_pretrained(output_dir)
|
| 106 |
-
|
| 107 |
# Générer un graphique des pertes d'entraînement et de validation
|
| 108 |
train_loss = [x['loss'] for x in trainer.state.log_history if 'loss' in x]
|
| 109 |
eval_loss = [x['eval_loss'] for x in trainer.state.log_history if 'eval_loss' in x]
|
|
@@ -114,37 +128,41 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
| 114 |
plt.title('Training and Validation Loss')
|
| 115 |
plt.legend()
|
| 116 |
plt.savefig(os.path.join(output_dir, 'training_eval_loss.png'))
|
| 117 |
-
|
| 118 |
return f"Training completed successfully.\nPreview of data:\n{preview}", eval_results
|
| 119 |
except Exception as e:
|
| 120 |
return f"An error occurred: {str(e)}"
|
| 121 |
|
|
|
|
| 122 |
# Fonction de génération de texte
|
| 123 |
-
def generate_text(prompt, temperature, top_k, max_length, repetition_penalty, use_comma):
|
| 124 |
try:
|
| 125 |
model_name = "./fine-tuned-gpt2"
|
| 126 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 127 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 128 |
-
|
| 129 |
if use_comma:
|
| 130 |
prompt = prompt.replace('.', ',')
|
| 131 |
-
|
| 132 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
| 133 |
attention_mask = inputs.attention_mask
|
| 134 |
outputs = model.generate(
|
| 135 |
-
inputs.input_ids,
|
| 136 |
attention_mask=attention_mask,
|
| 137 |
-
max_length=int(max_length),
|
| 138 |
-
temperature=float(temperature),
|
| 139 |
-
top_k=int(top_k),
|
|
|
|
| 140 |
repetition_penalty=float(repetition_penalty),
|
| 141 |
-
num_return_sequences=
|
| 142 |
pad_token_id=tokenizer.eos_token_id
|
| 143 |
)
|
| 144 |
-
|
|
|
|
| 145 |
except Exception as e:
|
| 146 |
return f"An error occurred: {str(e)}"
|
| 147 |
|
|
|
|
| 148 |
# Fonction pour configurer les presets
|
| 149 |
def set_preset(preset):
|
| 150 |
if preset == "Default":
|
|
@@ -154,52 +172,59 @@ def set_preset(preset):
|
|
| 154 |
elif preset == "High Accuracy":
|
| 155 |
return 10, 4, 1e-5
|
| 156 |
|
|
|
|
| 157 |
# Interface Gradio
|
| 158 |
with gr.Blocks() as ui:
|
| 159 |
-
gr.Markdown("#
|
| 160 |
-
|
| 161 |
with gr.Tab("Train Model"):
|
| 162 |
with gr.Row():
|
| 163 |
data_file = gr.File(label="Upload Data File (CSV, JSON, Excel)")
|
| 164 |
model_name = gr.Textbox(label="Model Name", value="gpt2")
|
| 165 |
output_dir = gr.Textbox(label="Output Directory", value="./fine-tuned-gpt2")
|
| 166 |
-
|
| 167 |
with gr.Row():
|
| 168 |
preset = gr.Radio(["Default", "Fast Training", "High Accuracy"], label="Preset")
|
| 169 |
epochs = gr.Number(label="Epochs", value=5)
|
| 170 |
batch_size = gr.Number(label="Batch Size", value=8)
|
| 171 |
learning_rate = gr.Number(label="Learning Rate", value=3e-5)
|
| 172 |
-
|
| 173 |
preset.change(set_preset, preset, [epochs, batch_size, learning_rate])
|
| 174 |
-
|
| 175 |
# Champs pour sélectionner les colonnes
|
| 176 |
with gr.Row():
|
| 177 |
-
|
| 178 |
description_col = gr.Dropdown(label="Description Column")
|
| 179 |
-
|
| 180 |
# Détection des colonnes lors du téléchargement du fichier
|
| 181 |
-
data_file.upload(read_file, inputs=data_file, outputs=[
|
| 182 |
-
|
| 183 |
train_button = gr.Button("Train Model")
|
| 184 |
train_output = gr.Textbox(label="Training Output")
|
| 185 |
train_graph = gr.Image(label="Training and Validation Loss Graph")
|
| 186 |
-
|
| 187 |
-
train_button.click(train_model,
|
| 188 |
-
|
|
|
|
|
|
|
| 189 |
with gr.Tab("Generate Text"):
|
| 190 |
with gr.Row():
|
| 191 |
with gr.Column():
|
| 192 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7)
|
| 193 |
top_k = gr.Slider(label="Top K", minimum=1, maximum=100, value=50)
|
|
|
|
| 194 |
max_length = gr.Slider(label="Max Length", minimum=10, maximum=1024, value=128)
|
| 195 |
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2)
|
| 196 |
use_comma = gr.Checkbox(label="Use Comma", value=True)
|
| 197 |
-
|
|
|
|
| 198 |
with gr.Column():
|
| 199 |
prompt = gr.Textbox(label="Prompt")
|
| 200 |
generate_button = gr.Button("Generate Text")
|
| 201 |
-
generated_text = gr.Textbox(label="Generated Text")
|
| 202 |
-
|
| 203 |
-
generate_button.click(generate_text,
|
|
|
|
|
|
|
| 204 |
|
| 205 |
ui.launch()
|
|
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import json
|
| 9 |
import io
|
| 10 |
+
from datetime import datetime
|
| 11 |
|
| 12 |
# Variables globales pour stocker les colonnes détectées
|
| 13 |
columns = []
|
| 14 |
|
| 15 |
+
|
| 16 |
# Fonction pour lire le fichier et détecter les colonnes
|
| 17 |
def read_file(data_file):
|
| 18 |
global columns
|
|
|
|
| 27 |
df = pd.read_excel(data_file.name)
|
| 28 |
else:
|
| 29 |
return "Invalid file format. Please upload a CSV, JSON, or Excel file."
|
| 30 |
+
|
| 31 |
# Détecter les colonnes
|
| 32 |
columns = df.columns.tolist()
|
| 33 |
return columns
|
| 34 |
except Exception as e:
|
| 35 |
return f"An error occurred: {str(e)}"
|
| 36 |
|
| 37 |
+
|
| 38 |
+
# Fonction pour valider les colonnes sélectionnées
|
| 39 |
+
def validate_columns(prompt_col, description_col):
|
| 40 |
+
if prompt_col not in columns or description_col not in columns:
|
| 41 |
+
return False
|
| 42 |
+
return True
|
| 43 |
+
|
| 44 |
+
|
| 45 |
# Fonction pour entraîner le modèle
|
| 46 |
def train_model(data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col):
|
| 47 |
try:
|
| 48 |
+
# Valider les colonnes sélectionnées
|
| 49 |
+
if not validate_columns(prompt_col, description_col):
|
| 50 |
+
return "Invalid column selection. Please ensure the columns exist in the dataset."
|
| 51 |
+
|
| 52 |
# Charger les données
|
| 53 |
file_extension = os.path.splitext(data_file.name)[1]
|
| 54 |
if file_extension == '.csv':
|
|
|
|
| 57 |
df = pd.read_json(data_file.name)
|
| 58 |
elif file_extension == '.xlsx':
|
| 59 |
df = pd.read_excel(data_file.name)
|
| 60 |
+
|
| 61 |
# Prévisualisation des données
|
| 62 |
preview = df.head().to_string(index=False)
|
| 63 |
+
|
| 64 |
# Préparer le texte d'entraînement
|
| 65 |
df['text'] = df[prompt_col] + ': ' + df[description_col]
|
| 66 |
dataset = Dataset.from_pandas(df[['text']])
|
| 67 |
+
|
| 68 |
# Initialiser le tokenizer et le modèle GPT-2
|
| 69 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 70 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 71 |
+
|
| 72 |
# Ajouter un token de padding si nécessaire
|
| 73 |
if tokenizer.pad_token is None:
|
| 74 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 75 |
model.resize_token_embeddings(len(tokenizer))
|
| 76 |
+
|
| 77 |
# Tokenizer les données
|
| 78 |
def tokenize_function(examples):
|
| 79 |
tokens = tokenizer(examples['text'], padding="max_length", truncation=True, max_length=128)
|
| 80 |
tokens['labels'] = tokens['input_ids'].copy()
|
| 81 |
return tokens
|
| 82 |
+
|
| 83 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 84 |
+
|
| 85 |
# Ajustement des hyperparamètres
|
| 86 |
training_args = TrainingArguments(
|
| 87 |
output_dir=output_dir,
|
|
|
|
| 101 |
load_best_model_at_end=True,
|
| 102 |
metric_for_best_model="eval_loss"
|
| 103 |
)
|
| 104 |
+
|
| 105 |
# Configuration du Trainer
|
| 106 |
trainer = Trainer(
|
| 107 |
model=model,
|
|
|
|
| 109 |
train_dataset=tokenized_datasets,
|
| 110 |
eval_dataset=tokenized_datasets,
|
| 111 |
)
|
| 112 |
+
|
| 113 |
# Entraînement et évaluation
|
| 114 |
trainer.train()
|
| 115 |
eval_results = trainer.evaluate()
|
| 116 |
+
|
| 117 |
# Sauvegarder le modèle fine-tuné
|
| 118 |
model.save_pretrained(output_dir)
|
| 119 |
tokenizer.save_pretrained(output_dir)
|
| 120 |
+
|
| 121 |
# Générer un graphique des pertes d'entraînement et de validation
|
| 122 |
train_loss = [x['loss'] for x in trainer.state.log_history if 'loss' in x]
|
| 123 |
eval_loss = [x['eval_loss'] for x in trainer.state.log_history if 'eval_loss' in x]
|
|
|
|
| 128 |
plt.title('Training and Validation Loss')
|
| 129 |
plt.legend()
|
| 130 |
plt.savefig(os.path.join(output_dir, 'training_eval_loss.png'))
|
| 131 |
+
|
| 132 |
return f"Training completed successfully.\nPreview of data:\n{preview}", eval_results
|
| 133 |
except Exception as e:
|
| 134 |
return f"An error occurred: {str(e)}"
|
| 135 |
|
| 136 |
+
|
| 137 |
# Fonction de génération de texte
|
| 138 |
+
def generate_text(prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma, batch_size):
|
| 139 |
try:
|
| 140 |
model_name = "./fine-tuned-gpt2"
|
| 141 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 142 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 143 |
+
|
| 144 |
if use_comma:
|
| 145 |
prompt = prompt.replace('.', ',')
|
| 146 |
+
|
| 147 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
| 148 |
attention_mask = inputs.attention_mask
|
| 149 |
outputs = model.generate(
|
| 150 |
+
inputs.input_ids,
|
| 151 |
attention_mask=attention_mask,
|
| 152 |
+
max_length=int(max_length),
|
| 153 |
+
temperature=float(temperature),
|
| 154 |
+
top_k=int(top_k),
|
| 155 |
+
top_p=float(top_p),
|
| 156 |
repetition_penalty=float(repetition_penalty),
|
| 157 |
+
num_return_sequences=int(batch_size),
|
| 158 |
pad_token_id=tokenizer.eos_token_id
|
| 159 |
)
|
| 160 |
+
|
| 161 |
+
return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
| 162 |
except Exception as e:
|
| 163 |
return f"An error occurred: {str(e)}"
|
| 164 |
|
| 165 |
+
|
| 166 |
# Fonction pour configurer les presets
|
| 167 |
def set_preset(preset):
|
| 168 |
if preset == "Default":
|
|
|
|
| 172 |
elif preset == "High Accuracy":
|
| 173 |
return 10, 4, 1e-5
|
| 174 |
|
| 175 |
+
|
| 176 |
# Interface Gradio
|
| 177 |
with gr.Blocks() as ui:
|
| 178 |
+
gr.Markdown("# Fine-Tune GPT-2 UI Design Model")
|
| 179 |
+
|
| 180 |
with gr.Tab("Train Model"):
|
| 181 |
with gr.Row():
|
| 182 |
data_file = gr.File(label="Upload Data File (CSV, JSON, Excel)")
|
| 183 |
model_name = gr.Textbox(label="Model Name", value="gpt2")
|
| 184 |
output_dir = gr.Textbox(label="Output Directory", value="./fine-tuned-gpt2")
|
| 185 |
+
|
| 186 |
with gr.Row():
|
| 187 |
preset = gr.Radio(["Default", "Fast Training", "High Accuracy"], label="Preset")
|
| 188 |
epochs = gr.Number(label="Epochs", value=5)
|
| 189 |
batch_size = gr.Number(label="Batch Size", value=8)
|
| 190 |
learning_rate = gr.Number(label="Learning Rate", value=3e-5)
|
| 191 |
+
|
| 192 |
preset.change(set_preset, preset, [epochs, batch_size, learning_rate])
|
| 193 |
+
|
| 194 |
# Champs pour sélectionner les colonnes
|
| 195 |
with gr.Row():
|
| 196 |
+
prompt_col = gr.Dropdown(label="Prompt Column")
|
| 197 |
description_col = gr.Dropdown(label="Description Column")
|
| 198 |
+
|
| 199 |
# Détection des colonnes lors du téléchargement du fichier
|
| 200 |
+
data_file.upload(read_file, inputs=data_file, outputs=[prompt_col, description_col])
|
| 201 |
+
|
| 202 |
train_button = gr.Button("Train Model")
|
| 203 |
train_output = gr.Textbox(label="Training Output")
|
| 204 |
train_graph = gr.Image(label="Training and Validation Loss Graph")
|
| 205 |
+
|
| 206 |
+
train_button.click(train_model,
|
| 207 |
+
inputs=[data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col,
|
| 208 |
+
description_col], outputs=[train_output, train_graph])
|
| 209 |
+
|
| 210 |
with gr.Tab("Generate Text"):
|
| 211 |
with gr.Row():
|
| 212 |
with gr.Column():
|
| 213 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7)
|
| 214 |
top_k = gr.Slider(label="Top K", minimum=1, maximum=100, value=50)
|
| 215 |
+
top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9)
|
| 216 |
max_length = gr.Slider(label="Max Length", minimum=10, maximum=1024, value=128)
|
| 217 |
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2)
|
| 218 |
use_comma = gr.Checkbox(label="Use Comma", value=True)
|
| 219 |
+
batch_size = gr.Number(label="Batch Size", value=1, minimum=1)
|
| 220 |
+
|
| 221 |
with gr.Column():
|
| 222 |
prompt = gr.Textbox(label="Prompt")
|
| 223 |
generate_button = gr.Button("Generate Text")
|
| 224 |
+
generated_text = gr.Textbox(label="Generated Text", lines=20)
|
| 225 |
+
|
| 226 |
+
generate_button.click(generate_text,
|
| 227 |
+
inputs=[prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma,
|
| 228 |
+
batch_size], outputs=generated_text)
|
| 229 |
|
| 230 |
ui.launch()
|