Spaces:
Build error
Build error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # CUSTOM VERSION OF https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition_flax.py | |
| from typing import Tuple, Union | |
| import flax | |
| import flax.linen as nn | |
| import jax | |
| import jax.numpy as jnp | |
| from flax.core.frozen_dict import FrozenDict | |
| from diffusers.configuration_utils import ConfigMixin, flax_register_to_config | |
| from diffusers.utils import BaseOutput | |
| from diffusers.models.embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps | |
| from diffusers.models.modeling_flax_utils import FlaxModelMixin | |
| from .unet_2d_blocks_flax import ( | |
| FlaxCrossAttnDownBlock2D, | |
| FlaxCrossAttnUpBlock2D, | |
| FlaxUNetCrossAttnMidBlock2D, | |
| FlaxLoRACrossAttnDownBlock2D, | |
| FlaxLoRACrossAttnUpBlock2D, | |
| FlaxLoRAUNetCrossAttnMidBlock2D, | |
| FlaxDownBlock2D, | |
| FlaxUpBlock2D, | |
| ) | |
| class FlaxUNet2DConditionOutput(BaseOutput): | |
| """ | |
| Args: | |
| sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`): | |
| Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
| """ | |
| sample: jnp.ndarray | |
| class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin): | |
| r""" | |
| FlaxUNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a | |
| timestep and returns sample shaped output. | |
| This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library | |
| implements for all the models (such as downloading or saving, etc.) | |
| Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) | |
| subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to | |
| general usage and behavior. | |
| Finally, this model supports inherent JAX features such as: | |
| - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) | |
| - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) | |
| - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) | |
| - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) | |
| Parameters: | |
| sample_size (`int`, *optional*): | |
| The size of the input sample. | |
| in_channels (`int`, *optional*, defaults to 4): | |
| The number of channels in the input sample. | |
| out_channels (`int`, *optional*, defaults to 4): | |
| The number of channels in the output. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
| The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D", | |
| "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D" | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): | |
| The tuple of upsample blocks to use. The corresponding class names will be: "FlaxUpBlock2D", | |
| "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D" | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8): | |
| The dimension of the attention heads. | |
| cross_attention_dim (`int`, *optional*, defaults to 768): | |
| The dimension of the cross attention features. | |
| dropout (`float`, *optional*, defaults to 0): | |
| Dropout probability for down, up and bottleneck blocks. | |
| flip_sin_to_cos (`bool`, *optional*, defaults to `True`): | |
| Whether to flip the sin to cos in the time embedding. | |
| freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
| use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): | |
| enable memory efficient attention https://arxiv.org/abs/2112.05682 | |
| """ | |
| sample_size: int = 32 | |
| in_channels: int = 4 | |
| out_channels: int = 4 | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "DownBlock2D", | |
| ) | |
| up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") | |
| only_cross_attention: Union[bool, Tuple[bool]] = False | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280) | |
| layers_per_block: int = 2 | |
| attention_head_dim: Union[int, Tuple[int]] = 8 | |
| cross_attention_dim: int = 1280 | |
| dropout: float = 0.0 | |
| use_linear_projection: bool = False | |
| dtype: jnp.dtype = jnp.float16 | |
| flip_sin_to_cos: bool = True | |
| freq_shift: int = 0 | |
| use_memory_efficient_attention: bool = False | |
| def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict: | |
| # init input tensors | |
| sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) | |
| sample = jnp.zeros(sample_shape, dtype=self.dtype) | |
| timesteps = jnp.ones((1,), dtype=jnp.int32) | |
| encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=self.dtype) | |
| params_rng, dropout_rng = jax.random.split(rng) | |
| rngs = {"params": params_rng, "dropout": dropout_rng} | |
| return self.init(rngs, sample, timesteps, encoder_hidden_states)["params"] | |
| def setup(self): | |
| block_out_channels = self.block_out_channels | |
| time_embed_dim = block_out_channels[0] * 4 | |
| # input | |
| self.conv_in = nn.Conv( | |
| block_out_channels[0], | |
| kernel_size=(3, 3), | |
| strides=(1, 1), | |
| padding=((1, 1), (1, 1)), | |
| dtype=self.dtype, | |
| ) | |
| # time | |
| self.time_proj = FlaxTimesteps( | |
| block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift | |
| ) | |
| self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) | |
| only_cross_attention = self.only_cross_attention | |
| if isinstance(only_cross_attention, bool): | |
| only_cross_attention = (only_cross_attention,) * len(self.down_block_types) | |
| attention_head_dim = self.attention_head_dim | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(self.down_block_types) | |
| # down | |
| down_blocks = [] | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(self.down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| if down_block_type == "CrossAttnDownBlock2D": | |
| down_block = FlaxCrossAttnDownBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| dropout=self.dropout, | |
| num_layers=self.layers_per_block, | |
| attn_num_head_channels=attention_head_dim[i], | |
| add_downsample=not is_final_block, | |
| use_linear_projection=self.use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| use_memory_efficient_attention=self.use_memory_efficient_attention, | |
| dtype=self.dtype, | |
| ) | |
| else: | |
| down_block = FlaxDownBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| dropout=self.dropout, | |
| num_layers=self.layers_per_block, | |
| add_downsample=not is_final_block, | |
| dtype=self.dtype, | |
| ) | |
| down_blocks.append(down_block) | |
| self.down_blocks = down_blocks | |
| # mid | |
| self.mid_block = FlaxUNetCrossAttnMidBlock2D( | |
| in_channels=block_out_channels[-1], | |
| dropout=self.dropout, | |
| attn_num_head_channels=attention_head_dim[-1], | |
| use_linear_projection=self.use_linear_projection, | |
| use_memory_efficient_attention=self.use_memory_efficient_attention, | |
| dtype=self.dtype, | |
| ) | |
| # up | |
| up_blocks = [] | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
| only_cross_attention = list(reversed(only_cross_attention)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(self.up_block_types): | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| if up_block_type == "CrossAttnUpBlock2D": | |
| up_block = FlaxCrossAttnUpBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| num_layers=self.layers_per_block + 1, | |
| attn_num_head_channels=reversed_attention_head_dim[i], | |
| add_upsample=not is_final_block, | |
| dropout=self.dropout, | |
| use_linear_projection=self.use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| use_memory_efficient_attention=self.use_memory_efficient_attention, | |
| dtype=self.dtype, | |
| ) | |
| else: | |
| up_block = FlaxUpBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| num_layers=self.layers_per_block + 1, | |
| add_upsample=not is_final_block, | |
| dropout=self.dropout, | |
| dtype=self.dtype, | |
| ) | |
| up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| self.up_blocks = up_blocks | |
| # out | |
| self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5) | |
| self.conv_out = nn.Conv( | |
| self.out_channels, | |
| kernel_size=(3, 3), | |
| strides=(1, 1), | |
| padding=((1, 1), (1, 1)), | |
| dtype=self.dtype, | |
| ) | |
| def __call__( | |
| self, | |
| sample, | |
| timesteps, | |
| encoder_hidden_states, | |
| down_block_additional_residuals=None, | |
| mid_block_additional_residual=None, | |
| return_dict: bool = True, | |
| train: bool = False, | |
| ) -> Union[FlaxUNet2DConditionOutput, Tuple]: | |
| r""" | |
| Args: | |
| sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor | |
| timestep (`jnp.ndarray` or `float` or `int`): timesteps | |
| encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a | |
| plain tuple. | |
| train (`bool`, *optional*, defaults to `False`): | |
| Use deterministic functions and disable dropout when not training. | |
| Returns: | |
| [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`: | |
| [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. | |
| When returning a tuple, the first element is the sample tensor. | |
| """ | |
| # 1. time | |
| if not isinstance(timesteps, jnp.ndarray): | |
| timesteps = jnp.array([timesteps], dtype=jnp.int32) | |
| elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: | |
| timesteps = timesteps.astype(dtype=jnp.float32) | |
| timesteps = jnp.expand_dims(timesteps, 0) | |
| t_emb = self.time_proj(timesteps) | |
| t_emb = self.time_embedding(t_emb) | |
| # 2. pre-process | |
| sample = jnp.transpose(sample, (0, 2, 3, 1)) | |
| sample = self.conv_in(sample) | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for down_block in self.down_blocks: | |
| if isinstance(down_block, FlaxCrossAttnDownBlock2D): | |
| sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train) | |
| else: | |
| sample, res_samples = down_block(sample, t_emb, deterministic=not train) | |
| down_block_res_samples += res_samples | |
| if down_block_additional_residuals is not None: | |
| new_down_block_res_samples = () | |
| for down_block_res_sample, down_block_additional_residual in zip( | |
| down_block_res_samples, down_block_additional_residuals | |
| ): | |
| down_block_res_sample += down_block_additional_residual | |
| new_down_block_res_samples += (down_block_res_sample,) | |
| down_block_res_samples = new_down_block_res_samples | |
| # 4. mid | |
| sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train) | |
| if mid_block_additional_residual is not None: | |
| sample += mid_block_additional_residual | |
| # 5. up | |
| for up_block in self.up_blocks: | |
| res_samples = down_block_res_samples[-(self.layers_per_block + 1) :] | |
| down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)] | |
| if isinstance(up_block, FlaxCrossAttnUpBlock2D): | |
| sample = up_block( | |
| sample, | |
| temb=t_emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| res_hidden_states_tuple=res_samples, | |
| deterministic=not train, | |
| ) | |
| else: | |
| sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train) | |
| # 6. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = nn.silu(sample) | |
| sample = self.conv_out(sample) | |
| sample = jnp.transpose(sample, (0, 3, 1, 2)) | |
| if not return_dict: | |
| return (sample,) | |
| return FlaxUNet2DConditionOutput(sample=sample) | |
| class FlaxLoRAUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin): | |
| r""" | |
| FlaxLoRAUNet2DConditionModel is a custom FlaxUNet2DConditionModel with a few tweaks: | |
| - Cross Attention is replaced by Cross-Frame Attention | |
| - Low Rank Adaptation (LoRA) layers are added to the Cross-Frame Attention | |
| - An frame positional encoding is added to the encoder_hidden_states via a LoRA linear layer | |
| FlaxUNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a | |
| timestep and returns sample shaped output. | |
| This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library | |
| implements for all the models (such as downloading or saving, etc.) | |
| Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) | |
| subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to | |
| general usage and behavior. | |
| Finally, this model supports inherent JAX features such as: | |
| - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) | |
| - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) | |
| - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) | |
| - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) | |
| Parameters: | |
| sample_size (`int`, *optional*): | |
| The size of the input sample. | |
| in_channels (`int`, *optional*, defaults to 4): | |
| The number of channels in the input sample. | |
| out_channels (`int`, *optional*, defaults to 4): | |
| The number of channels in the output. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
| The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D", | |
| "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D" | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): | |
| The tuple of upsample blocks to use. The corresponding class names will be: "FlaxUpBlock2D", | |
| "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D" | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8): | |
| The dimension of the attention heads. | |
| cross_attention_dim (`int`, *optional*, defaults to 768): | |
| The dimension of the cross attention features. | |
| dropout (`float`, *optional*, defaults to 0): | |
| Dropout probability for down, up and bottleneck blocks. | |
| flip_sin_to_cos (`bool`, *optional*, defaults to `True`): | |
| Whether to flip the sin to cos in the time embedding. | |
| freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
| use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): | |
| enable memory efficient attention https://arxiv.org/abs/2112.05682 | |
| """ | |
| sample_size: int = 32 | |
| in_channels: int = 4 | |
| out_channels: int = 4 | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "DownBlock2D", | |
| ) | |
| up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") | |
| only_cross_attention: Union[bool, Tuple[bool]] = False | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280) | |
| layers_per_block: int = 2 | |
| attention_head_dim: Union[int, Tuple[int]] = 8 | |
| cross_attention_dim: int = 1280 | |
| dropout: float = 0.0 | |
| use_linear_projection: bool = False | |
| dtype: jnp.dtype = jnp.float16 | |
| flip_sin_to_cos: bool = True | |
| freq_shift: int = 0 | |
| use_memory_efficient_attention: bool = False | |
| def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict: | |
| # init input tensors | |
| sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) | |
| sample = jnp.zeros(sample_shape, dtype=self.dtype) | |
| timesteps = jnp.ones((1,), dtype=jnp.int32) | |
| encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=self.dtype) | |
| params_rng, dropout_rng = jax.random.split(rng) | |
| rngs = {"params": params_rng, "dropout": dropout_rng} | |
| return self.init(rngs, sample, timesteps, encoder_hidden_states)["params"] | |
| def setup(self): | |
| block_out_channels = self.block_out_channels | |
| time_embed_dim = block_out_channels[0] * 4 | |
| # input | |
| self.conv_in = nn.Conv( | |
| block_out_channels[0], | |
| kernel_size=(3, 3), | |
| strides=(1, 1), | |
| padding=((1, 1), (1, 1)), | |
| dtype=self.dtype, | |
| ) | |
| # time | |
| self.time_proj = FlaxTimesteps( | |
| block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift | |
| ) | |
| self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) | |
| only_cross_attention = self.only_cross_attention | |
| if isinstance(only_cross_attention, bool): | |
| only_cross_attention = (only_cross_attention,) * len(self.down_block_types) | |
| attention_head_dim = self.attention_head_dim | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(self.down_block_types) | |
| # #frame positional embedding | |
| # self.frame_pe = LoRAPositionalEncoding(self.cross_attention_dim) | |
| # down | |
| down_blocks = [] | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(self.down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| if down_block_type == "CrossAttnDownBlock2D": | |
| down_block = FlaxLoRACrossAttnDownBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| dropout=self.dropout, | |
| num_layers=self.layers_per_block, | |
| attn_num_head_channels=attention_head_dim[i], | |
| add_downsample=not is_final_block, | |
| use_linear_projection=self.use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| use_memory_efficient_attention=self.use_memory_efficient_attention, | |
| dtype=self.dtype, | |
| ) | |
| else: | |
| down_block = FlaxDownBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| dropout=self.dropout, | |
| num_layers=self.layers_per_block, | |
| add_downsample=not is_final_block, | |
| dtype=self.dtype, | |
| ) | |
| down_blocks.append(down_block) | |
| self.down_blocks = down_blocks | |
| # mid | |
| self.mid_block = FlaxLoRAUNetCrossAttnMidBlock2D( | |
| in_channels=block_out_channels[-1], | |
| dropout=self.dropout, | |
| attn_num_head_channels=attention_head_dim[-1], | |
| use_linear_projection=self.use_linear_projection, | |
| use_memory_efficient_attention=self.use_memory_efficient_attention, | |
| dtype=self.dtype, | |
| ) | |
| # up | |
| up_blocks = [] | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
| only_cross_attention = list(reversed(only_cross_attention)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(self.up_block_types): | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| if up_block_type == "CrossAttnUpBlock2D": | |
| up_block = FlaxLoRACrossAttnUpBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| num_layers=self.layers_per_block + 1, | |
| attn_num_head_channels=reversed_attention_head_dim[i], | |
| add_upsample=not is_final_block, | |
| dropout=self.dropout, | |
| use_linear_projection=self.use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| use_memory_efficient_attention=self.use_memory_efficient_attention, | |
| dtype=self.dtype, | |
| ) | |
| else: | |
| up_block = FlaxUpBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| num_layers=self.layers_per_block + 1, | |
| add_upsample=not is_final_block, | |
| dropout=self.dropout, | |
| dtype=self.dtype, | |
| ) | |
| up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| self.up_blocks = up_blocks | |
| # out | |
| self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5) | |
| self.conv_out = nn.Conv( | |
| self.out_channels, | |
| kernel_size=(3, 3), | |
| strides=(1, 1), | |
| padding=((1, 1), (1, 1)), | |
| dtype=self.dtype, | |
| ) | |
| def __call__( | |
| self, | |
| sample, | |
| timesteps, | |
| encoder_hidden_states, | |
| down_block_additional_residuals=None, | |
| mid_block_additional_residual=None, | |
| return_dict: bool = True, | |
| train: bool = False, | |
| scale: float = 1., | |
| ) -> Union[FlaxUNet2DConditionOutput, Tuple]: | |
| r""" | |
| Args: | |
| sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor | |
| timestep (`jnp.ndarray` or `float` or `int`): timesteps | |
| encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a | |
| plain tuple. | |
| train (`bool`, *optional*, defaults to `False`): | |
| Use deterministic functions and disable dropout when not training. | |
| Returns: | |
| [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`: | |
| [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. | |
| When returning a tuple, the first element is the sample tensor. | |
| """ | |
| # 1. time | |
| if not isinstance(timesteps, jnp.ndarray): | |
| timesteps = jnp.array([timesteps], dtype=jnp.int32) | |
| elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: | |
| timesteps = timesteps.astype(dtype=jnp.float32) | |
| timesteps = jnp.expand_dims(timesteps, 0) | |
| t_emb = self.time_proj(timesteps) | |
| t_emb = self.time_embedding(t_emb) | |
| # 2. pre-process | |
| sample = jnp.transpose(sample, (0, 2, 3, 1)) | |
| sample = self.conv_in(sample) | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for down_block in self.down_blocks: | |
| if isinstance(down_block, FlaxLoRACrossAttnDownBlock2D): | |
| sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train, scale=scale) | |
| else: | |
| sample, res_samples = down_block(sample, t_emb, deterministic=not train) | |
| down_block_res_samples += res_samples | |
| if down_block_additional_residuals is not None: | |
| new_down_block_res_samples = () | |
| for down_block_res_sample, down_block_additional_residual in zip( | |
| down_block_res_samples, down_block_additional_residuals | |
| ): | |
| down_block_res_sample += down_block_additional_residual | |
| new_down_block_res_samples += (down_block_res_sample,) | |
| down_block_res_samples = new_down_block_res_samples | |
| # if encoder_hidden_states is not None: | |
| # #adding frame positional encoding | |
| # encoder_hidden_states = self.frame_pe(encoder_hidden_states, scale=scale) | |
| # 4. mid | |
| sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train, scale=scale) | |
| if mid_block_additional_residual is not None: | |
| sample += mid_block_additional_residual | |
| # 5. up | |
| for up_block in self.up_blocks: | |
| res_samples = down_block_res_samples[-(self.layers_per_block + 1) :] | |
| down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)] | |
| if isinstance(up_block, FlaxLoRACrossAttnUpBlock2D): | |
| sample = up_block( | |
| sample, | |
| temb=t_emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| res_hidden_states_tuple=res_samples, | |
| deterministic=not train, | |
| scale=scale, | |
| ) | |
| else: | |
| sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train) | |
| # 6. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = nn.silu(sample) | |
| sample = self.conv_out(sample) | |
| sample = jnp.transpose(sample, (0, 3, 1, 2)) | |
| if not return_dict: | |
| return (sample,) | |
| return FlaxUNet2DConditionOutput(sample=sample) |