Spaces:
Build error
Build error
| import gradio as gr | |
| from text_to_animation.model import ControlAnimationModel | |
| import os | |
| from utils.hf_utils import get_model_list | |
| huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME") | |
| on_huggingspace = huggingspace_name if huggingspace_name is not None else False | |
| examples = [ | |
| ["an astronaut waving the arm on the moon"], | |
| ["a sloth surfing on a wakeboard"], | |
| ["an astronaut walking on a street"], | |
| ["a cute cat walking on grass"], | |
| ["a horse is galloping on a street"], | |
| ["an astronaut is skiing down the hill"], | |
| ["a gorilla walking alone down the street"], | |
| ["a gorilla dancing on times square"], | |
| ["A panda dancing dancing like crazy on Times Square"], | |
| ] | |
| images = [] # str path of generated images | |
| initial_frame = None | |
| animation_model = None | |
| def generate_initial_frames( | |
| frames_prompt, | |
| model_link, | |
| is_safetensor, | |
| frames_n_prompt, | |
| width, | |
| height, | |
| cfg_scale, | |
| seed, | |
| ): | |
| global images | |
| if not model_link: | |
| model_link = "dreamlike-art/dreamlike-photoreal-2.0" | |
| images = animation_model.generate_initial_frames( | |
| frames_prompt, | |
| model_link, | |
| is_safetensor, | |
| frames_n_prompt, | |
| width, | |
| height, | |
| cfg_scale, | |
| seed, | |
| ) | |
| return images | |
| def select_initial_frame(evt: gr.SelectData): | |
| global initial_frame | |
| if evt.index < len(images): | |
| initial_frame = images[evt.index] | |
| print(initial_frame) | |
| def create_demo(model: ControlAnimationModel): | |
| global animation_model | |
| animation_model = model | |
| with gr.Blocks() as demo: | |
| with gr.Column(visible=True) as frame_selection_col: | |
| with gr.Row(): | |
| with gr.Column(): | |
| frames_prompt = gr.Textbox( | |
| placeholder="Prompt", show_label=False, lines=4 | |
| ) | |
| frames_n_prompt = gr.Textbox( | |
| placeholder="Negative Prompt (optional)", | |
| show_label=False, | |
| lines=2, | |
| ) | |
| with gr.Column(): | |
| model_link = gr.Textbox( | |
| label="Model Link", | |
| placeholder="dreamlike-art/dreamlike-photoreal-2.0", | |
| info="Give the hugging face model name or URL link to safetensor.", | |
| ) | |
| is_safetensor = gr.Checkbox(label="Safetensors") | |
| gen_frames_button = gr.Button( | |
| value="Generate Initial Frames", variant="primary" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| width = gr.Slider(32, 2048, value=512, label="Width") | |
| height = gr.Slider(32, 2048, value=512, label="Height") | |
| cfg_scale = gr.Slider(1, 20, value=7.0, step=0.1, label="CFG scale") | |
| seed = gr.Slider( | |
| label="Seed", | |
| info="-1 for random seed on each run. Otherwise, the seed will be fixed.", | |
| minimum=-1, | |
| maximum=65536, | |
| value=0, | |
| step=1, | |
| ) | |
| with gr.Column(scale=3): | |
| initial_frames = gr.Gallery( | |
| label="Initial Frames", show_label=False | |
| ).style( | |
| columns=[2], rows=[2], object_fit="scale-down", height="auto" | |
| ) | |
| initial_frames.select(select_initial_frame) | |
| select_frame_button = gr.Button( | |
| value="Select Initial Frame", variant="secondary" | |
| ) | |
| with gr.Column(visible=False) as gen_animation_col: | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt") | |
| gen_animation_button = gr.Button( | |
| value="Generate Animation", variant="primary" | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| n_prompt = gr.Textbox( | |
| label="Negative Prompt (optional)", value="" | |
| ) | |
| if on_huggingspace: | |
| video_length = gr.Slider( | |
| label="Video length", minimum=8, maximum=16, step=1 | |
| ) | |
| else: | |
| video_length = gr.Number( | |
| label="Video length", value=8, precision=0 | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| info="-1 for random seed on each run. Otherwise, the seed will be fixed.", | |
| minimum=-1, | |
| maximum=65536, | |
| value=0, | |
| step=1, | |
| ) | |
| motion_field_strength_x = gr.Slider( | |
| label="Global Translation $\\delta_{x}$", | |
| minimum=-20, | |
| maximum=20, | |
| value=12, | |
| step=1, | |
| ) | |
| motion_field_strength_y = gr.Slider( | |
| label="Global Translation $\\delta_{y}$", | |
| minimum=-20, | |
| maximum=20, | |
| value=12, | |
| step=1, | |
| ) | |
| t0 = gr.Slider( | |
| label="Timestep t0", | |
| minimum=0, | |
| maximum=47, | |
| value=44, | |
| step=1, | |
| info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1 ", | |
| ) | |
| t1 = gr.Slider( | |
| label="Timestep t1", | |
| minimum=1, | |
| info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1", | |
| maximum=48, | |
| value=47, | |
| step=1, | |
| ) | |
| chunk_size = gr.Slider( | |
| label="Chunk size", | |
| minimum=2, | |
| maximum=16, | |
| value=8, | |
| step=1, | |
| visible=not on_huggingspace, | |
| info="Number of frames processed at once. Reduce for lower memory usage.", | |
| ) | |
| merging_ratio = gr.Slider( | |
| label="Merging ratio", | |
| minimum=0.0, | |
| maximum=0.9, | |
| step=0.1, | |
| value=0.0, | |
| visible=not on_huggingspace, | |
| info="Ratio of how many tokens are merged. The higher the more compression (less memory and faster inference).", | |
| ) | |
| with gr.Column(): | |
| result = gr.Video(label="Generated Video") | |
| inputs = [ | |
| prompt, | |
| model_link, | |
| is_safetensor, | |
| motion_field_strength_x, | |
| motion_field_strength_y, | |
| t0, | |
| t1, | |
| n_prompt, | |
| chunk_size, | |
| video_length, | |
| merging_ratio, | |
| seed, | |
| ] | |
| # gr.Examples(examples=examples, | |
| # inputs=inputs, | |
| # outputs=result, | |
| # fn=None, | |
| # run_on_click=False, | |
| # cache_examples=on_huggingspace, | |
| # ) | |
| frame_inputs = [ | |
| frames_prompt, | |
| model_link, | |
| is_safetensor, | |
| frames_n_prompt, | |
| width, | |
| height, | |
| cfg_scale, | |
| seed, | |
| ] | |
| def submit_select(): | |
| show = True | |
| if initial_frame is not None: # More to next step | |
| return { | |
| frame_selection_col: gr.update(visible=not show), | |
| gen_animation_col: gr.update(visible=show), | |
| } | |
| return { | |
| frame_selection_col: gr.update(visible=show), | |
| gen_animation_col: gr.update(visible=not show), | |
| } | |
| gen_frames_button.click( | |
| generate_initial_frames, | |
| inputs=frame_inputs, | |
| outputs=initial_frames, | |
| ) | |
| select_frame_button.click( | |
| submit_select, inputs=None, outputs=[frame_selection_col, gen_animation_col] | |
| ) | |
| gen_animation_button.click( | |
| fn=model.process_text2video, | |
| inputs=inputs, | |
| outputs=result, | |
| ) | |
| return demo | |