Spaces:
Build error
Build error
Pie31415
commited on
Commit
·
43b5157
1
Parent(s):
e2f5469
update
Browse files- text_to_animation/model_flax.py +191 -0
text_to_animation/model_flax.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from enum import Enum
|
| 3 |
+
import gc
|
| 4 |
+
import numpy as np
|
| 5 |
+
import jax.numpy as jnp
|
| 6 |
+
import jax
|
| 7 |
+
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from typing import List
|
| 10 |
+
|
| 11 |
+
from flax.training.common_utils import shard
|
| 12 |
+
from flax.jax_utils import replicate
|
| 13 |
+
from flax import jax_utils
|
| 14 |
+
import einops
|
| 15 |
+
|
| 16 |
+
from transformers import CLIPTokenizer, CLIPFeatureExtractor, FlaxCLIPTextModel
|
| 17 |
+
from diffusers import (
|
| 18 |
+
FlaxDDIMScheduler,
|
| 19 |
+
FlaxAutoencoderKL,
|
| 20 |
+
FlaxUNet2DConditionModel as VanillaFlaxUNet2DConditionModel,
|
| 21 |
+
)
|
| 22 |
+
from text_to_animation.models.unet_2d_condition_flax import FlaxUNet2DConditionModel
|
| 23 |
+
from diffusers import FlaxControlNetModel
|
| 24 |
+
|
| 25 |
+
from text_to_animation.pipelines.text_to_video_pipeline_flax import (
|
| 26 |
+
FlaxTextToVideoPipeline,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
import utils.utils as utils
|
| 30 |
+
import utils.gradio_utils as gradio_utils
|
| 31 |
+
import os
|
| 32 |
+
|
| 33 |
+
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
|
| 34 |
+
|
| 35 |
+
unshard = lambda x: einops.rearrange(x, "d b ... -> (d b) ...")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class ModelType(Enum):
|
| 39 |
+
Text2Video = 1
|
| 40 |
+
ControlNetPose = 2
|
| 41 |
+
StableDiffusion = 3
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def replicate_devices(array):
|
| 45 |
+
return jnp.expand_dims(array, 0).repeat(jax.device_count(), 0)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class ControlAnimationModel:
|
| 49 |
+
def __init__(self, dtype, **kwargs):
|
| 50 |
+
self.dtype = dtype
|
| 51 |
+
self.rng = jax.random.PRNGKey(0)
|
| 52 |
+
self.pipe = None
|
| 53 |
+
self.model_type = None
|
| 54 |
+
|
| 55 |
+
self.states = {}
|
| 56 |
+
self.model_name = ""
|
| 57 |
+
|
| 58 |
+
def set_model(
|
| 59 |
+
self,
|
| 60 |
+
model_id: str,
|
| 61 |
+
**kwargs,
|
| 62 |
+
):
|
| 63 |
+
if hasattr(self, "pipe") and self.pipe is not None:
|
| 64 |
+
del self.pipe
|
| 65 |
+
self.pipe = None
|
| 66 |
+
gc.collect()
|
| 67 |
+
|
| 68 |
+
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
| 69 |
+
"fusing/stable-diffusion-v1-5-controlnet-openpose",
|
| 70 |
+
from_pt=True,
|
| 71 |
+
dtype=jnp.float16,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
scheduler, scheduler_state = FlaxDDIMScheduler.from_pretrained(
|
| 75 |
+
model_id, subfolder="scheduler", from_pt=True
|
| 76 |
+
)
|
| 77 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
| 78 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
| 79 |
+
model_id, subfolder="feature_extractor"
|
| 80 |
+
)
|
| 81 |
+
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
|
| 82 |
+
model_id, subfolder="unet", from_pt=True, dtype=self.dtype
|
| 83 |
+
)
|
| 84 |
+
unet_vanilla = VanillaFlaxUNet2DConditionModel.from_config(
|
| 85 |
+
model_id, subfolder="unet", from_pt=True, dtype=self.dtype
|
| 86 |
+
)
|
| 87 |
+
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
|
| 88 |
+
model_id, subfolder="vae", from_pt=True, dtype=self.dtype
|
| 89 |
+
)
|
| 90 |
+
text_encoder = FlaxCLIPTextModel.from_pretrained(
|
| 91 |
+
model_id, subfolder="text_encoder", from_pt=True, dtype=self.dtype
|
| 92 |
+
)
|
| 93 |
+
self.pipe = FlaxTextToVideoPipeline(
|
| 94 |
+
vae=vae,
|
| 95 |
+
text_encoder=text_encoder,
|
| 96 |
+
tokenizer=tokenizer,
|
| 97 |
+
unet=unet,
|
| 98 |
+
unet_vanilla=unet_vanilla,
|
| 99 |
+
controlnet=controlnet,
|
| 100 |
+
scheduler=scheduler,
|
| 101 |
+
safety_checker=None,
|
| 102 |
+
feature_extractor=feature_extractor,
|
| 103 |
+
)
|
| 104 |
+
self.params = {
|
| 105 |
+
"unet": unet_params,
|
| 106 |
+
"vae": vae_params,
|
| 107 |
+
"scheduler": scheduler_state,
|
| 108 |
+
"controlnet": controlnet_params,
|
| 109 |
+
"text_encoder": text_encoder.params,
|
| 110 |
+
}
|
| 111 |
+
self.p_params = jax_utils.replicate(self.params)
|
| 112 |
+
self.model_name = model_id
|
| 113 |
+
|
| 114 |
+
def generate_initial_frames(
|
| 115 |
+
self,
|
| 116 |
+
prompt: str,
|
| 117 |
+
video_path: str,
|
| 118 |
+
n_prompt: str = "",
|
| 119 |
+
num_imgs: int = 4,
|
| 120 |
+
resolution: int = 512,
|
| 121 |
+
model_id: str = "runwayml/stable-diffusion-v1-5",
|
| 122 |
+
) -> List[Image.Image]:
|
| 123 |
+
self.set_model(model_id=model_id)
|
| 124 |
+
|
| 125 |
+
video_path = gradio_utils.motion_to_video_path(video_path)
|
| 126 |
+
|
| 127 |
+
added_prompt = "high quality, best quality, HD, clay stop-motion, claymation, HQ, masterpiece, art, smooth"
|
| 128 |
+
prompts = added_prompt + ", " + prompt
|
| 129 |
+
|
| 130 |
+
added_n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly"
|
| 131 |
+
negative_prompts = added_n_prompt + ", " + n_prompt
|
| 132 |
+
|
| 133 |
+
video, fps = utils.prepare_video(
|
| 134 |
+
video_path, resolution, None, self.dtype, False, output_fps=4
|
| 135 |
+
)
|
| 136 |
+
control = utils.pre_process_pose(video, apply_pose_detect=False)
|
| 137 |
+
|
| 138 |
+
seeds = [seed for seed in jax.random.randint(self.rng, [num_imgs], 0, 65536)]
|
| 139 |
+
prngs = [jax.random.PRNGKey(seed) for seed in seeds]
|
| 140 |
+
print(seeds)
|
| 141 |
+
images = self.pipe.generate_starting_frames(
|
| 142 |
+
params=self.p_params,
|
| 143 |
+
prngs=prngs,
|
| 144 |
+
controlnet_image=control,
|
| 145 |
+
prompt=prompts,
|
| 146 |
+
neg_prompt=negative_prompts,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
images = [np.array(images[i]) for i in range(images.shape[0])]
|
| 150 |
+
|
| 151 |
+
return images
|
| 152 |
+
|
| 153 |
+
def generate_video_from_frame(self, controlnet_video, prompt, seed, neg_prompt=""):
|
| 154 |
+
# generate a video using the seed provided
|
| 155 |
+
prng_seed = jax.random.PRNGKey(seed)
|
| 156 |
+
len_vid = controlnet_video.shape[0]
|
| 157 |
+
# print(f"Generating video from prompt {'<aardman> style '+ prompt}, with {controlnet_video.shape[0]} frames and prng seed {seed}")
|
| 158 |
+
added_prompt = "high quality, best quality, HD, clay stop-motion, claymation, HQ, masterpiece, art, smooth"
|
| 159 |
+
prompts = added_prompt + ", " + prompt
|
| 160 |
+
|
| 161 |
+
added_n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly"
|
| 162 |
+
negative_prompts = added_n_prompt + ", " + neg_prompt
|
| 163 |
+
|
| 164 |
+
# prompt_ids = self.pipe.prepare_text_inputs(["aardman style "+ prompt]*len_vid)
|
| 165 |
+
# n_prompt_ids = self.pipe.prepare_text_inputs([neg_prompt]*len_vid)
|
| 166 |
+
|
| 167 |
+
prompt_ids = self.pipe.prepare_text_inputs([prompts] * len_vid)
|
| 168 |
+
n_prompt_ids = self.pipe.prepare_text_inputs([negative_prompts] * len_vid)
|
| 169 |
+
prng = replicate_devices(
|
| 170 |
+
prng_seed
|
| 171 |
+
) # jax.random.split(prng, jax.device_count())
|
| 172 |
+
image = replicate_devices(controlnet_video)
|
| 173 |
+
prompt_ids = replicate_devices(prompt_ids)
|
| 174 |
+
n_prompt_ids = replicate_devices(n_prompt_ids)
|
| 175 |
+
motion_field_strength_x = replicate_devices(jnp.array(3))
|
| 176 |
+
motion_field_strength_y = replicate_devices(jnp.array(4))
|
| 177 |
+
smooth_bg_strength = replicate_devices(jnp.array(0.8))
|
| 178 |
+
vid = (
|
| 179 |
+
self.pipe(
|
| 180 |
+
image=image,
|
| 181 |
+
prompt_ids=prompt_ids,
|
| 182 |
+
neg_prompt_ids=n_prompt_ids,
|
| 183 |
+
params=self.p_params,
|
| 184 |
+
prng_seed=prng,
|
| 185 |
+
jit=True,
|
| 186 |
+
smooth_bg_strength=smooth_bg_strength,
|
| 187 |
+
motion_field_strength_x=motion_field_strength_x,
|
| 188 |
+
motion_field_strength_y=motion_field_strength_y,
|
| 189 |
+
).images
|
| 190 |
+
)[0]
|
| 191 |
+
return utils.create_gif(np.array(vid), 4, path=None, watermark=None)
|