Spaces:
Runtime error
Runtime error
| import re | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, AutoModel, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
| from vllm import LLM, SamplingParams | |
| import torch | |
| import gradio as gr | |
| import json | |
| import os | |
| import shutil | |
| import requests | |
| import numpy as np | |
| import pandas as pd | |
| from chromadb.config import Settings | |
| from chromadb.utils import embedding_functions | |
| from FlagEmbedding import BGEM3FlagModel | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| model = BGEM3FlagModel('BAAI/bge-m3', | |
| use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation | |
| embeddings = np.load("embeddings_tchap.npy") | |
| embeddings_data = pd.read_json("embeddings_tchap.json") | |
| embeddings_text = embeddings_data["text_with_context"].tolist() | |
| # Define the device | |
| #device = "cuda" if torch.cuda.is_available() else "cpu" | |
| #Define variables | |
| temperature=0.2 | |
| max_new_tokens=1000 | |
| top_p=0.92 | |
| repetition_penalty=1.7 | |
| #model_name = "Pclanglais/Tchap" | |
| #llm = LLM(model_name, max_model_len=4096) | |
| system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nTu es Albert, l'agent conversationnel des services publics qui peut décrire des documents de référence ou aider à des tâches de rédaction<|eot_id|>" | |
| #Vector search over the database | |
| def vector_search(sentence_query): | |
| query_embedding = model.encode(sentence_query, | |
| batch_size=12, | |
| max_length=256, # If you don't need such a long length, you can set a smaller value to speed up the encoding process. | |
| )['dense_vecs'] | |
| # Reshape the query embedding to fit the cosine_similarity function requirements | |
| query_embedding_reshaped = query_embedding.reshape(1, -1) | |
| # Compute cosine similarities | |
| similarities = cosine_similarity(query_embedding_reshaped, embeddings) | |
| # Find the index of the closest document (highest similarity) | |
| closest_doc_index = np.argmax(similarities) | |
| # Closest document's embedding | |
| closest_doc_embedding = embeddings_text[closest_doc_index] | |
| return closest_doc_embedding | |
| class StopOnTokens(StoppingCriteria): | |
| def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
| stop_ids = [29, 0] | |
| for stop_id in stop_ids: | |
| if input_ids[0][-1] == stop_id: | |
| return True | |
| return False | |
| def predict(message, history): | |
| text = vector_search(message) | |
| message = message + "\n\n### Source ###\n" + text | |
| history_transformer_format = history + [[message, ""]] | |
| stop = StopOnTokens() | |
| messages = "".join(["".join(["<|start_header_id|>user<|end_header_id|>\n\n"+item[0], "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"+item[1]]) | |
| for item in history_transformer_format]) | |
| messages = system_prompt + messages | |
| """"model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| model_inputs, | |
| streamer=streamer, | |
| max_new_tokens=1024, | |
| do_sample=True, | |
| top_p=0.95, | |
| top_k=1000, | |
| temperature=1.0, | |
| num_beams=1, | |
| stopping_criteria=StoppingCriteriaList([stop]) | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| partial_message = "" | |
| for new_token in streamer: | |
| if new_token != '<': | |
| partial_message += new_token | |
| yield partial_message""" | |
| return messages | |
| # Define the Gradio interface | |
| title = "Tchap" | |
| description = "Le chatbot du service public" | |
| examples = [ | |
| [ | |
| "Qui peut bénéficier de l'AIP?", # user_message | |
| 0.7 # temperature | |
| ] | |
| ] | |
| gr.ChatInterface(predict).launch() |