Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline | |
| # Load the model and tokenizer | |
| # def load_model(): | |
| # # Load the NuminaMath-72B-CoT model | |
| # pipe = pipeline( | |
| # "text-generation", | |
| # model="AI-MO/NuminaMath-72B-CoT", | |
| # torch_dtype="auto", | |
| # device_map="auto" # Automatically map to available GPU/CPU | |
| # ) | |
| # return pipe | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| def load_model(): | |
| # tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-72B-CoT") | |
| tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-CoT") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| # "AI-MO/NuminaMath-72B-CoT", | |
| "AI-MO/NuminaMath-7B-CoT", | |
| device_map="auto", # Automatically map to available GPU | |
| # offload_folder="offload" # Offload unused parts to disk | |
| load_in_8bit=True # Load model in 8-bit precision | |
| ) | |
| return pipeline("text-generation", model=model, tokenizer=tokenizer) | |
| # Initialize the pipeline | |
| model_pipeline = load_model() | |
| # Define the function to process inputs | |
| def solve_math_question(prompt): | |
| # Generate output using the model | |
| outputs = model_pipeline(prompt, max_new_tokens=300, do_sample=False) | |
| return outputs[0]["generated_text"] | |
| # Define the Gradio interface | |
| with gr.Blocks() as app: | |
| gr.Markdown("# NuminaMath-72B-CoT Math Question Solver") | |
| gr.Markdown( | |
| "Ask a math-related question, and the model will attempt to solve it with reasoning!" | |
| ) | |
| with gr.Row(): | |
| question = gr.Textbox( | |
| label="Your Math Question", | |
| placeholder="what is 2+2?", | |
| ) | |
| output = gr.Textbox(label="Model Output") | |
| submit_button = gr.Button("Solve") | |
| submit_button.click(solve_math_question, inputs=question, outputs=output) | |
| # Launch the app | |
| app.launch() |