File size: 43,864 Bytes
d01e027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b86be0
d01e027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
import os
import cv2
import torch
import shutil
from datetime import datetime
import glob
import gc
import gradio as gr
import numpy as np
import open3d as o3d
import concerto
from scipy.spatial.transform import Rotation as R
import trimesh
import time
from typing import List, Tuple
from pathlib import Path
from einops import rearrange
from tqdm import tqdm
import camtools as ct
from PIL import Image
from torchvision import transforms as TF
try:
    import flash_attn
except ImportError:
    flash_attn = None

from visual_util import predictions_to_glb
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images
from vggt.utils.pose_enc import pose_encoding_to_extri_intri
from vggt.utils.geometry import unproject_depth_map_to_point_map

device = "cuda" if torch.cuda.is_available() else "cpu"

def run_model(target_dir, model) -> dict:
    """
    Run the VGGT model on images in the 'target_dir/images' folder and return predictions.
    """
    print(f"Processing images from {target_dir}")

    # if not torch.cuda.is_available():
    #     raise ValueError("CUDA is not available. Check your environment.")

    # Move model to device
    model = model.to(device)
    model.eval()

    # Load and preprocess images
    image_names = glob.glob(os.path.join(target_dir, "images", "*"))
    image_names = sorted(image_names)
    print(f"Found {len(image_names)} images")
    if len(image_names) == 0:
        raise ValueError("No images found. Check your upload.")

    images = load_and_preprocess_images(image_names).to(device)
    print(f"Preprocessed images shape: {images.shape}")

    # Run inference
    print("Running inference...")
    with torch.no_grad():
        if device == "cuda":
            with torch.cuda.amp.autocast(dtype=torch.bfloat16):
                predictions = model(images)
        else:
            predictions = model(images)

    # Convert pose encoding to extrinsic and intrinsic matrices
    print("Converting pose encoding to extrinsic and intrinsic matrices...")
    extrinsic, intrinsic = pose_encoding_to_extri_intri(predictions["pose_enc"], images.shape[-2:])
    predictions["extrinsic"] = extrinsic
    predictions["intrinsic"] = intrinsic

    # Convert tensors to numpy
    for key in predictions.keys():
        if isinstance(predictions[key], torch.Tensor):
            predictions[key] = predictions[key].cpu().numpy().squeeze(0)  # remove batch dimension

    # Generate world points from depth map
    print("Computing world points from depth map...")
    depth_map = predictions["depth"]  # (S, H, W, 1)
    world_points = unproject_depth_map_to_point_map(depth_map, predictions["extrinsic"], predictions["intrinsic"])
    predictions["world_points_from_depth"] = world_points

    # Clean up
    torch.cuda.empty_cache()
    return predictions

def handle_uploads(input_file,input_video,conf_thres,frame_slider,prediction_mode,if_TSDF):
    """
    Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
    images or extracted frames from video into it. Return (target_dir, image_paths).
    """
    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    # Create a unique folder name
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    target_dir = f"demo_output/inputs_{timestamp}"
    target_dir_images = os.path.join(target_dir, "images")
    target_dir_pcds = os.path.join(target_dir, "pcds")

    # Clean up if somehow that folder already exists
    if os.path.exists(target_dir):
        shutil.rmtree(target_dir)
    os.makedirs(target_dir)
    os.makedirs(target_dir_images)
    os.makedirs(target_dir_pcds)
    # --- Handle video ---
    if input_video is not None:
        print("processing video")
        if isinstance(input_video, dict) and "name" in input_video:
            video_path = input_video["name"]
        else:
            video_path = input_video

        vs = cv2.VideoCapture(video_path)
        fps = vs.get(cv2.CAP_PROP_FPS)
        frame_interval = int(fps * frame_slider)  # 1 frame/sec

        count = 0
        video_frame_num = 0
        image_paths = []
        while True:
            gotit, frame = vs.read()
            if not gotit:
                break
            count += 1
            if count % frame_interval == 0:
                image_path = os.path.join(target_dir_images, f"{video_frame_num:06}.png")
                cv2.imwrite(image_path, frame)
                image_paths.append(image_path)
                video_frame_num += 1
        # Sort final images for gallery
        image_paths = sorted(image_paths)
        original_points, original_colors, original_normals = parse_frames(target_dir,conf_thres,prediction_mode,if_TSDF)
    if input_file is not None:
        print("processing ply")
        pcd = o3d.io.read_point_cloud(input_file.name) 
        pcd.estimate_normals()
        original_points = np.asarray(pcd.points)
        original_colors = np.asarray(pcd.colors)
        original_normals = np.asarray(pcd.normals)
        image_paths = None
    scene_3d = trimesh.Scene()
    point_cloud_data = trimesh.PointCloud(vertices=original_points, colors=original_colors, vertex_normals=original_normals)
    scene_3d.add_geometry(point_cloud_data)
    original_temp = os.path.join(target_dir_pcds,"original.glb")
    scene_3d.export(file_obj=original_temp)
    np.save(os.path.join(target_dir_pcds, f"points.npy"), original_points)
    np.save(os.path.join(target_dir_pcds, f"colors.npy"), original_colors)
    np.save(os.path.join(target_dir_pcds, f"normals.npy"), original_normals)
    end_time = time.time()
    print(f"Files copied to {target_dir}; took {end_time - start_time:.3f} seconds")
    return target_dir, image_paths,original_temp, end_time - start_time

def update_gallery_on_upload(input_file,input_video,conf_thres,frame_slider,prediction_mode,TSDF_mode):
    """
    Whenever user uploads or changes files, immediately handle them
    and show in the gallery. Return (target_dir, image_paths).
    If nothing is uploaded, returns "None" and empty list.
    """
    if not input_video and not input_file:
        return None, None, None, None
    if_TSDF = True if TSDF_mode=="Yes" else False
    target_dir, image_paths,original_view, reconstruction_time = handle_uploads(input_file,input_video,conf_thres,frame_slider,prediction_mode,if_TSDF)
    if input_file is not None:
        return original_view, target_dir, [], f"Upload and preprocess complete with {reconstruction_time:.3f} sec. Click \"PCA Generate\" to begin PCA processing."
    if input_video is not None:
        return original_view, target_dir, image_paths, f"Upload and preprocess complete with {reconstruction_time:.3f} sec. Click \"PCA Generate\" to begin PCA processing."

def clear_fields():
    """
    Clears the 3D viewer, the stored target_dir, and empties the gallery.
    """
    return None

def PCAing_log(is_example, log_output):
    """
    Display a quick log message while waiting.
    """
    if is_example:
        return log_output
    return "Loading for Doing PCA..."

def reset_log():
    """
    Reset a quick log message.
    """
    return "A new point cloud file or video is uploading and preprocessing..."

def parse_frames(
    target_dir,
    conf_thres=3.0,
    prediction_mode="Pointmap Regression",
    if_TSDF=True,
):
    """
    Perform reconstruction using the already-created target_dir/images.
    """
    if not os.path.isdir(target_dir) or target_dir == "None":
        return None, "No valid target directory found. Please upload first.", None, None

    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    # Prepare frame_filter dropdown
    target_dir_images = os.path.join(target_dir, "images")
    target_dir_pcds = os.path.join(target_dir, "pcds")
    all_files = sorted(os.listdir(target_dir_images)) if os.path.isdir(target_dir_images) else []
    all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
    frame_filter_choices = ["All"] + all_files

    print("Running run_model...")
    with torch.no_grad():
        predictions = run_model(target_dir, VGGT_model)

    # Save predictions
    prediction_save_path = os.path.join(target_dir, "predictions.npz")
    np.savez(prediction_save_path, **predictions)

    # Convert pose encoding to extrinsic and intrinsic matrices
    images = predictions["images"]
    Ts, Ks = predictions["extrinsic"],predictions["intrinsic"]
    Ts = ct.convert.pad_0001(Ts)
    Ts_inv = np.linalg.inv(Ts)
    Cs = np.array([ct.convert.T_to_C(T) for T in Ts])  # (n, 3)

    # [1, 8, 294, 518, 3]
    world_points = predictions["world_points"]

    # Compute view direction for each pixel
    # (b n h w c) - (n, 3)
    view_dirs = world_points - rearrange(Cs, "n c -> n 1 1 c")
    view_dirs = rearrange(view_dirs, "n h w c -> (n h w) c")
    view_dirs = view_dirs / np.linalg.norm(view_dirs, axis=-1, keepdims=True)

    # Extract points and colors
    # [1, 8, 3, 294, 518]
    img_num = world_points.shape[1]
    images = predictions["images"]
    points = rearrange(world_points, "n h w c -> (n h w) c")
    colors = rearrange(images, "n c h w -> (n h w) c")

    if prediction_mode=="Pointmap Branch":
        world_points_conf = predictions["world_points_conf"]
        conf = world_points_conf.reshape(-1)
        points,Ts_inv,_ = Coord2zup(points, Ts_inv)
        scale = 3 / (points[:, 2].max() - points[:, 2].min())
        points *= scale
        Ts_inv[:, :3, 3] *= scale

        # Create a point cloud
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(points)
        pcd.colors = o3d.utility.Vector3dVector(colors)
        pcd.estimate_normals()
        # o3d.io.write_point_cloud("pcd.ply", pcd)
        try:
            pcd, inliers, rotation_matrix, offset = extract_and_align_ground_plane(pcd)
        except Exception as e:
            print(f"cannot find ground, err:{e}")
        # Filp normals such that normals always point to camera
        # Compute the dot product between the normal and the view direction
        # If the dot product is less than 0, flip the normal
        normals = np.asarray(pcd.normals)
        view_dirs = np.asarray(view_dirs)
        dot_product = np.sum(normals * view_dirs, axis=-1)
        flip_mask = dot_product > 0
        normals[flip_mask] = -normals[flip_mask]

        # Normalize normals a nd m
        normals = normals / np.linalg.norm(normals, axis=-1, keepdims=True)
        pcd.normals = o3d.utility.Vector3dVector(normals)
        if conf_thres == 0.0:
            conf_threshold = 0.0
        else:
            conf_threshold = np.percentile(conf, conf_thres)
        conf_mask = (conf >= conf_threshold) & (conf > 1e-5)
        points = points[conf_mask]
        colors = colors[conf_mask]
        normals = normals[conf_mask]
    elif prediction_mode=="Depthmap Branch":
        # Integrate RGBD images into a TSDF volume and extract a mesh
        # (n, h, w, 3)
        im_colors = rearrange(images, "n c h w -> (n) h w c")
        # (b, n, h, w, 3)
        im_dists = world_points - rearrange(Cs, "n c -> n 1 1 c")
        im_dists = np.linalg.norm(im_dists, axis=-1, keepdims=False)

        # Convert distance to depth
        im_depths = []  # (n, h, w, c)
        for im_dist, K in zip(im_dists, Ks):
            im_depth = ct.convert.im_distance_to_im_depth(im_dist, K)
            im_depths.append(im_depth)
        im_depths = np.stack(im_depths, axis=0)
        if if_TSDF:
            mesh = integrate_rgbd_to_mesh(
                Ks=Ks,
                Ts=Ts,
                im_depths=im_depths,
                im_colors=im_colors,
                voxel_size=1 / 512,
            )
            rotation_angle = -np.pi / 2
            rotation_axis = np.array([1, 0, 0])  # X 轴
            mesh.rotate(
                o3d.geometry.get_rotation_matrix_from_axis_angle(rotation_axis * rotation_angle),
                center=(0,0,0)
            )
            vertices = np.asarray(mesh.vertices)
            scale_factor = 3./(np.max(vertices[:,2])-np.min(vertices[:,2]))
            mesh.scale(scale_factor, center=(0,0,0))
            points = np.asarray(mesh.vertices)
            colors = np.asarray(mesh.vertex_colors) if mesh.has_vertex_colors() else np.zeros_like(vertices)
            if not mesh.has_vertex_normals():
                mesh.compute_vertex_normals()
            normals = np.asarray(mesh.vertex_normals)
            Ts_inv = rotx(Ts_inv, theta=-90)
            Ts_inv[:, :3, 3] *= scale_factor
            pcd = o3d.geometry.PointCloud()
            pcd.points = o3d.utility.Vector3dVector(points)
            pcd.colors = o3d.utility.Vector3dVector(colors)
            pcd.normals = o3d.utility.Vector3dVector(normals)
        else:
            points=[]
            for K, T, im_depth in zip(Ks, Ts, im_depths):
                point = ct.project.im_depth_to_point_cloud(
                    im_depth=im_depth,
                    K=K,
                    T=T,
                    to_image=False,
                    ignore_invalid=False,
                )
                points.append(point)
            points = np.vstack(points)
            colors = im_colors.reshape(-1,3)
            world_points_conf = predictions["depth_conf"]
            conf = world_points_conf.reshape(-1)
            if conf_thres == 0.0:
                conf_threshold = 0.0
            else:
                conf_threshold = np.percentile(conf, conf_thres)
            conf_mask = (conf >= conf_threshold) & (conf > 1e-5)
            points = points[conf_mask]
            colors = colors[conf_mask]
            points,Ts_inv,_ = Coord2zup(points, Ts_inv)
            scale_factor = 3./(np.max(points[:,2])-np.min(points[:,2]))
            points *= scale_factor
            Ts_inv[:, :3, 3] *= scale_factor
            pcd = o3d.geometry.PointCloud()
            pcd.points = o3d.utility.Vector3dVector(points)
            pcd.colors = o3d.utility.Vector3dVector(colors)
            pcd.estimate_normals()
        try:
            pcd, inliers, rotation_matrix, offset = extract_and_align_ground_plane(pcd)
        except Exception as e:
            print(f"cannot find ground, err:{e}")
    original_points = np.asarray(pcd.points)
    original_colors = np.asarray(pcd.colors)
    original_normals = np.asarray(pcd.normals)
    # Cleanup
    del predictions
    gc.collect()
    torch.cuda.empty_cache()
    end_time = time.time()
    print(f"Total time: {end_time - start_time:.2f} seconds")
    return original_points, original_colors, original_normals

def extract_and_align_ground_plane(pcd, 
                                   height_percentile=20, 
                                   ransac_distance_threshold=0.01, 
                                   ransac_n=3, 
                                   ransac_iterations=1000,
                                   max_angle_degree=40,
                                   max_trials=6):
    points = np.asarray(pcd.points)
    z_vals = points[:, 2]
    z_thresh = np.percentile(z_vals, height_percentile)
    low_indices = np.where(z_vals <= z_thresh)[0]

    remaining_indices = low_indices.copy()

    for trial in range(max_trials):
        if len(remaining_indices) < ransac_n:
            raise ValueError("Not enough points left to fit a plane.")

        low_pcd = pcd.select_by_index(remaining_indices)

        plane_model, inliers = low_pcd.segment_plane(
            distance_threshold=ransac_distance_threshold,
            ransac_n=ransac_n,
            num_iterations=ransac_iterations)
        a, b, c, d = plane_model
        normal = np.array([a, b, c])
        normal /= np.linalg.norm(normal)
        
        # current_plane_pcd = pcd.select_by_index(remaining_indices[inliers])
        # o3d.io.write_point_cloud("plane.ply",current_plane_pcd)
        # exit()

        angle = np.arccos(np.clip(np.dot(normal, [0, 0, 1]), -1.0, 1.0)) * 180 / np.pi
        if angle <= max_angle_degree:
            inliers_global = remaining_indices[inliers]

            target = np.array([0, 0, 1])
            axis = np.cross(normal, target)
            axis_norm = np.linalg.norm(axis)

            if axis_norm < 1e-6:
                rotation_matrix = np.eye(3)
            else:
                axis /= axis_norm
                rot_angle = np.arccos(np.clip(np.dot(normal, target), -1.0, 1.0))
                rotation = R.from_rotvec(axis * rot_angle)
                rotation_matrix = rotation.as_matrix()

            rotated_points = points @ rotation_matrix.T
            ground_points_z = rotated_points[inliers_global, 2]
            offset = np.mean(ground_points_z)
            rotated_points[:, 2] -= offset

            aligned_pcd = o3d.geometry.PointCloud()
            aligned_pcd.points = o3d.utility.Vector3dVector(rotated_points)
            if pcd.has_colors():
                aligned_pcd.colors = pcd.colors
            if pcd.has_normals():
                rotated_normals = np.asarray(pcd.normals) @ rotation_matrix.T
                aligned_pcd.normals = o3d.utility.Vector3dVector(rotated_normals)

            return aligned_pcd, inliers_global, rotation_matrix, offset

        else:
            rejected_indices = remaining_indices[inliers]
            remaining_indices = np.setdiff1d(remaining_indices, rejected_indices)

    raise ValueError("Failed to find a valid ground plane within max trials.")

def rotx(x, theta=90):
    """
    Rotate x by theta degrees around the x-axis
    """
    theta = np.deg2rad(theta)
    rot_matrix = np.array(
        [
            [1, 0, 0, 0],
            [0, np.cos(theta), -np.sin(theta), 0],
            [0, np.sin(theta), np.cos(theta), 0],
            [0, 0, 0, 1],
        ]
    )
    return rot_matrix@ x


def Coord2zup(points, extrinsics, normals = None):
    """
    Convert the dust3r coordinate system to the z-up coordinate system
    """
    points = np.concatenate([points, np.ones([points.shape[0], 1])], axis=1).T
    points = rotx(points, -90)[:3].T
    if normals is not None:
        normals = np.concatenate([normals, np.ones([normals.shape[0], 1])], axis=1).T
        normals = rotx(normals, -90)[:3].T
        normals = normals / np.linalg.norm(normals, axis=1, keepdims=True)
    t = np.min(points,axis=0)
    points -= t
    extrinsics = rotx(extrinsics, -90)
    extrinsics[:, :3, 3] -= t.T
    return points, extrinsics, normals
def integrate_rgbd_to_mesh(
    Ks,
    Ts,
    im_depths,
    im_colors,
    voxel_size,
    bbox=None,
):
    """
    Integrate RGBD images into a TSDF volume and extract a mesh.

    Args:
        Ks: (N, 3, 3) camera intrinsics.
        Ts: (N, 4, 4) camera extrinsics.
        im_depths: (N, H, W) depth images, already in world scale.
        im_colors: (N, H, W, 3) color images, float range in [0, 1].
        voxel_size: TSDF voxel size, in meters, e.g. 3 / 512.
        bbox: Open3D axis-aligned bounding box, for cropping.

    Per Open3D convention, invalid depth values shall be set to 0.
    """
    num_images = len(Ks)
    if (
        len(Ts) != num_images
        or len(im_depths) != num_images
        or len(im_colors) != num_images
    ):
        raise ValueError("Ks, Ts, im_depths, im_colors must have the same length.")

    # Constants.
    trunc_voxel_multiplier = 8.0
    sdf_trunc = trunc_voxel_multiplier * voxel_size

    volume = o3d.pipelines.integration.ScalableTSDFVolume(
        voxel_length=voxel_size,
        sdf_trunc=sdf_trunc,
        color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8,
    )

    for K, T, im_depth, im_color in tqdm(
        zip(Ks, Ts, im_depths, im_colors),
        total=len(Ks),
        desc="Integrating RGBD frames",
    ):
        # Set invalid depth values to 0, based on bounding box.
        if bbox is not None:
            points = ct.project.im_depth_to_point_cloud(
                im_depth=im_depth,
                K=K,
                T=T,
                to_image=False,
                ignore_invalid=False,
            )
            assert len(points) == im_depth.shape[0] * im_depth.shape[1]
            point_indices_inside_bbox = bbox.get_point_indices_within_bounding_box(
                o3d.utility.Vector3dVector(points)
            )
            point_indices_outside_bbox = np.setdiff1d(
                np.arange(len(points)), point_indices_inside_bbox
            )
            im_depth.ravel()[point_indices_outside_bbox] = 0

        im_color_uint8 = np.ascontiguousarray((im_color * 255).astype(np.uint8))
        im_depth_uint16 = np.ascontiguousarray((im_depth * 1000).astype(np.uint16))
        im_color_o3d = o3d.geometry.Image(im_color_uint8)
        im_depth_o3d = o3d.geometry.Image(im_depth_uint16)
        im_rgbd_o3d = o3d.geometry.RGBDImage.create_from_color_and_depth(
            im_color_o3d,
            im_depth_o3d,
            depth_scale=1000.0,
            depth_trunc=10.0,
            convert_rgb_to_intensity=False,
        )
        o3d_intrinsic = o3d.camera.PinholeCameraIntrinsic(
            width=im_depth.shape[1],
            height=im_depth.shape[0],
            fx=K[0, 0],
            fy=K[1, 1],
            cx=K[0, 2],
            cy=K[1, 2],
        )
        o3d_extrinsic = T
        volume.integrate(
            im_rgbd_o3d,
            o3d_intrinsic,
            o3d_extrinsic,
        )

    mesh = volume.extract_triangle_mesh()
    return mesh

def get_pca_color(feat, start = 0, brightness=1.25, center=True):
    u, s, v = torch.pca_lowrank(feat, center=center, q=3*(start+1), niter=5)
    projection = feat @ v
    projection = projection[:, 3*start:3*(start+1)] * 0.6 + projection[:, 3*start:3*(start+1)] * 0.4
    min_val = projection.min(dim=-2, keepdim=True)[0]
    max_val = projection.max(dim=-2, keepdim=True)[0]
    div = torch.clamp(max_val - min_val, min=1e-6)
    color = (projection - min_val) / div * brightness
    color = color.clamp(0.0, 1.0)
    return color

def Concerto_process(target_dir, original_points, original_colors, original_normals, slider_value, bright_value, model_type):
    gc.collect()
    torch.cuda.empty_cache()
    target_dir_pcds = os.path.join(target_dir, "pcds")

    point = {"coord": original_points, "color": original_colors, "normal":original_normals}
    original_coord = point["coord"].copy()
    original_color = point["color"].copy()
    point = transform(point)

    with torch.inference_mode():
        for key in point.keys():
            if isinstance(point[key], torch.Tensor) and device=="cuda":
                point[key] = point[key].cuda(non_blocking=True)
        # model forward:
        concerto_start_time = time.time()
        if model_type =="Concerto":
            point = concerto_model(point)
        elif model_type == "Sonata":
            point = sonata_model(point)
        concerto_end_time = time.time()
        # upcast point feature
        # Point is a structure contains all the information during forward
        for _ in range(2):
            assert "pooling_parent" in point.keys()
            assert "pooling_inverse" in point.keys()
            parent = point.pop("pooling_parent")
            inverse = point.pop("pooling_inverse")
            parent.feat = torch.cat([parent.feat, point.feat[inverse]], dim=-1)
            point = parent
        while "pooling_parent" in point.keys():
            assert "pooling_inverse" in point.keys()
            parent = point.pop("pooling_parent")
            inverse = point.pop("pooling_inverse")
            parent.feat = point.feat[inverse]
            point = parent

        # here point is down-sampled by GridSampling in default transform pipeline
        # feature of point cloud in original scale can be acquired by:
        _ = point.feat[point.inverse]

        # PCA
        point_feat = point.feat.cpu().detach().numpy()
        np.save(os.path.join(target_dir_pcds,"feat.npy"),point_feat)
        pca_start_time = time.time()
        pca_color = get_pca_color(point.feat,start = slider_value, brightness=bright_value, center=True)
        pca_end_time = time.time()

    # inverse back to original scale before grid sampling
    # point.inverse is acquired from the GirdSampling transform
    point_inverse = point.inverse.cpu().detach().numpy()
    np.save(os.path.join(target_dir_pcds,"inverse.npy"),point_inverse)
    original_pca_color = pca_color[point.inverse]
    points = original_coord
    colors = original_pca_color.cpu().detach().numpy()

    end_time = time.time()
    return points, colors, concerto_end_time - concerto_start_time, pca_end_time - pca_start_time

def gradio_demo(target_dir,pca_slider,bright_slider, model_type, if_color=True, if_normal=True):
    target_dir_pcds = os.path.join(target_dir, "pcds")
    if not os.path.isfile(os.path.join(target_dir_pcds,"points.npy")):
        return None, "No point cloud available. Please upload data first."
    original_points = np.load(os.path.join(target_dir_pcds,"points.npy"))
    if if_color:
        original_colors = np.load(os.path.join(target_dir_pcds,"colors.npy"))
    else:
        original_colors = np.zeros_like(original_points)
    if if_normal:
        original_normals = np.load(os.path.join(target_dir_pcds,"normals.npy"))
    else:
        original_normals = np.zeros_like(original_points)
    processed_temp = (os.path.join(target_dir_pcds,"processed.glb"))
    processed_points, processed_colors, concerto_time, pca_time = Concerto_process(target_dir,original_points, original_colors,original_normals, pca_slider, bright_slider, model_type)
    feat_3d = trimesh.Scene()
    feat_data = trimesh.PointCloud(vertices=processed_points, colors=processed_colors, vertex_normals=original_normals)
    feat_3d.add_geometry(feat_data)
    feat_3d.export(processed_temp)

    return processed_temp, f"Feature visualization process finished with {concerto_time:.3f} seconds using Concerto inference and {pca_time:.3f} seconds using PCA. Updating visualization."

def concerto_slider_update(target_dir,pca_slider,bright_slider,is_example,log_output):
    if is_example == "True":
        return None, log_output
    else:
        target_dir_pcds = os.path.join(target_dir, "pcds")
        if os.path.isfile(os.path.join(target_dir_pcds,"feat.npy")):
            feat = np.load(os.path.join(target_dir_pcds,"feat.npy"))
            inverse = np.load(os.path.join(target_dir_pcds,"inverse.npy"))
            feat = torch.tensor(feat, device = device)
            inverse = torch.tensor(inverse, device = device)
            pca_start_time = time.time()
            pca_colors = get_pca_color(feat,start = pca_slider, brightness=bright_slider, center=True)
            processed_colors = pca_colors[inverse].cpu().detach().numpy()
            pca_end_time = time.time()
            pca_time = pca_end_time - pca_start_time
            processed_points = np.load(os.path.join(target_dir_pcds,"points.npy"))
            processed_normals = np.load(os.path.join(target_dir_pcds,"normals.npy"))
            processed_temp = (os.path.join(target_dir_pcds,"processed.glb"))
            feat_3d = trimesh.Scene()
            feat_data = trimesh.PointCloud(vertices=processed_points, colors=processed_colors, vertex_normals=processed_normals)
            feat_3d.add_geometry(feat_data)
            feat_3d.export(processed_temp)
            log_output = f"Feature visualization process finished with{pca_time:.3f} seconds using PCA. Updating visualization."
        else:
            processed_temp = None
            log_output = "No representations saved, please click PCA generate first."
            # processed_temp, log_output = gradio_demo(target_dir,pca_slider,bright_slider)
    return processed_temp, log_output

# set random seed
# (random seed affect pca color, yet change random seed need manual adjustment kmeans)
# (the pca prevent in paper is with another version of cuda and pytorch environment)
concerto.utils.set_seed(53124)
# Load model
if device == 'cuda' and flash_attn is not None:
    print("Loading model with Flash Attention on GPU.")
    concerto_model = concerto.load("concerto_large", repo_id="Pointcept/Concerto").to(device)
    sonata_model = concerto.model.load("sonata", repo_id="facebook/sonata").to(device)
else:
    print("Loading model on CPU or without Flash Attention.")
    custom_config = dict(
        # enc_patch_size=[1024 for _ in range(5)],  # reduce patch size if necessary
        enable_flash=False,
    )
    concerto_model = concerto.load(
        "concerto_large", repo_id="Pointcept/Concerto", custom_config=custom_config
    ).to(device)
    sonata_model = concerto.load("sonata", repo_id="facebook/sonata", custom_config=custom_config).to(device)

transform = concerto.transform.default()

VGGT_model = VGGT().to(device)
_URL = "https://huggingface.co/facebook/VGGT-1B/resolve/main/model.pt"
VGGT_model.load_state_dict(torch.hub.load_state_dict_from_url(_URL))
# VGGT_model.load_state_dict(torch.load("vggt/ckpt/model.pt",weights_only=True))

examples_video = [
    # ["example/video/conference_room.mp4", 0.0, 1, "Depthmap Branch", "Yes",0,1.2, "True"],
    # ["example/video/office.mp4", 0.0, 1, "Pointmap Branch", "Yes",2,1.1, "True"],
    ["example/video/re10k_1.mp4", 10.0, 1, "Depthmap Branch", "No",2,1.2, "True"],
    ["example/video/re10k_2.mp4", 30.0, 1, "Depthmap Branch", "Yes",1,1.2, "True"],
    ["example/video/re10k_3.mp4", 10.0, 1, "Depthmap Branch", "Yes",1,1.2, "True"],
    ["example/video/re10k_4.mp4", 10.0, 1, "Depthmap Branch", "Yes",1,1., "True"],
]

examples_pcd = [
    ["example/pcd/scannet_0024.png","example/pcd/scannet_0024.ply",2,1.2, "True"],
    ["example/pcd/scannet_0603.png","example/pcd/scannet_0603.ply",0,1.2, "True"],
    # ["example/pcd/hm3d_00012_kDgLKdMd5X8_2.png","example/pcd/hm3d_00012_kDgLKdMd5X8_2.ply",0,1.2, "True"],
    ["example/pcd/hm3d_00113_3goH1WRaCYC.png","example/pcd/hm3d_00113_3goH1WRaCYC.ply",0,1.2, "True"],
    ["example/pcd/s3dis_Area2_auditorium1.png","example/pcd/s3dis_Area2_auditorium1.ply",0,1.2, "True"],
    # ["example/pcd/s3dis_Area4_lobby1.png","example/pcd/s3dis_Area4_lobby1.ply",1,1., "True"],
]

# ["example/pcd/scannetpp_2a1b555966.png","example/pcd/scannetpp_2a1b555966.ply",1,1.1, "True"],
    # ["example/pcd/hm3d_00012_kDgLKdMd5X8_1.png","example/pcd/hm3d_00012_kDgLKdMd5X8_1.ply",0,1.0, "True"],
    # ["example/pcd/s3dis_Area2_conferenceRoom1.png","example/pcd/s3dis_Area2_conferenceRoom1.ply",0,1.2, "True"],
    # ["example/pcd/s3dis_Area4_hallway3.png","example/pcd/s3dis_Area4_hallway3.ply",0,1.2, "True"],

with gr.Blocks(
    css="""
    .custom-log * {
        font-style: italic;
        font-size: 22px !important;
        background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%);
        -webkit-background-clip: text;
        background-clip: text;
        font-weight: bold !important;
        color: transparent !important;
        text-align: center !important;
        width: 800px;  
        height: 100px; 
    }
    
    .example-log * {
        font-style: italic;
        font-size: 16px !important;
        background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%);
        -webkit-background-clip: text;
        background-clip: text;
        color: transparent !important;
    }

    .common-markdown * {
        font-size: 22px !important;
        -webkit-background-clip: text;
        background-clip: text;
        font-weight: bold !important;
        color: #0ea5e9 !important;
        text-align: center !important;
    }

    #big-box {
        border: 3px solid #00bcd4; 
        padding: 20px;            
        background-color: transparent;  
        border-radius: 15px;   
    }
    
    #my_radio .wrap {
        display: flex;
        flex-wrap: nowrap;
        justify-content: center;
        align-items: center;
    }

    #my_radio .wrap label {
        display: flex;
        width: 50%;
        justify-content: center;
        align-items: center;
        margin: 0;
        padding: 10px 0;
        box-sizing: border-box;
    }
    """,
) as demo:
    gr.HTML(
    """
    <h1>Concerto: Joint 2D-3D Self-Supervised Learning for Emergent Spatial Representations</h1>
    <div style="font-size: 16px; line-height: 1.5;">
        <ol>
            <details style="display:inline;">
                <summary style="display:inline;"><h3>Getting Started:(<strong>Click to expand</strong>)</h3></summary>
            <li><strong>Before Start:</strong> We deploy the model on CPU, thus making the inference speed slow. Due to space limitations, you may encounter errors. If so, please deploy this demo locally.</li>
            <li><strong>Upload Your Data:</strong> Use the "Upload Video" or "Upload Point Cloud" blocks on the left to provide your input. If you upload a video, it will be automatically split into individual frames with the specified frame gap by VGGT.</li>
            <li>
                <strong>[Optional] Adjust Video-Lifted Point Cloud:</strong>
                Before reconstructing the video, you can fine-tune the VGGT lifting process using the options below
                <details style="display:inline;">
                    <summary style="display:inline;">(<strong>Click to expand</strong>)</summary>
                    <ul>
                        <li><em>Frame Gap / N Sec:</em> Adjust the frame interval.</li>
                        <li><em>Confidence Threshold:</em> Adjust the point filtering based on confidence levels.</li>
                        <li><em>Select Prediction Mode:</em> Choose between "Depthmap Branch" and "Pointmap Branch."</li>
                        <li><em>TSDF Integration (Depthmap Branch Mode):</em> Enable TSDF integration to reduce noise in the point cloud when using the "Depthmap Branch" mode. This procedure will cost a long time for refinement.</li>
                    </ul>
                </details>
            </li>
            <li><strong>PCA Generation:</strong> After reconstruction, click the "PCA Generate" button to start the representation extraction and PCA process.</li>
            <li><strong>Clear:</strong> Click the "Clear" button to reset all content in the blocks.</li>
            <li><strong>Point Cloud Preview:</strong> Your uploaded video or point cloud will be displayed in this block.</li>
            <li><strong>PCA Result:</strong> The PCA point cloud will appear here. You can rotate, drag, and zoom to explore the model, and download the GLB file.</li>
            <li>
                <strong>[Optional] Adjust the Point Cloud Input (pre-release feature of the next work): use the checkbox "Input with Point Cloud Color" and "Input with Point Cloud Normal".
            </li>
            <li>
                <strong>[Optional] Adjust PCA Visualization:</strong>
                Fine-tune the PCA visualization using the options below
                <details style="display:inline;">
                    <summary style="display:inline;">(<strong>Click to expand</strong>)</summary>
                    <ul>
                        <li><em>Model Type:</em> Choose the model from Concerto and Sonata.</li>
                        <li><em>PCA Start Dimension:</em> PCA reduces high-dimensional representations into 3D vectors. Adjust the PCA start dimension to change the range of the visualization. Increasing this value can help you see PCA visualization with less variance when the initial PCA dimension shows less diversity.</li>
                        <li><em>PCA Brightness:</em> Adjust the brightness of the PCA visualization results.</li>
                        <li><em>Notice:</em> As a linear dimension reduction method, PCA has its limitation. Sometimes, the visualization cannot fully exhibit the quality of representations.</li>
                    </ul>
                </details>
            </li>
            </details>
        </ol>
    </div>

    """
    )
    _ = gr.Textbox(label="_", visible=False, value="False")
    is_example = gr.Textbox(label="is_example", visible=False, value="False")
    target_dir = gr.Textbox(label="Target Dir", visible=False, value="None")
    preview_imgs = gr.Image(type="filepath",label="Preview Imgs", visible=False, value="None")
    with gr.Row():
        with gr.Column(scale=1,elem_id="big-box"):
            input_file = gr.File(label="Upload Point Cloud", file_types=[".ply"])
            input_video = gr.Video(label="Upload Video", interactive=True)
            image_gallery = gr.Gallery(
                label="Preview",
                columns=4,
                height="300px",
                show_download_button=True,
                object_fit="contain",
                preview=True,
            )

            frame_slider = gr.Slider(minimum=0.1, maximum=10, value=1, step=0.1, 
                             label="1 Frame/ N Sec", interactive=True)
            conf_thres = gr.Slider(minimum=0, maximum=100, value=10, step=0.1, 
                             label="Confidence", interactive=True)
            prediction_mode = gr.Radio(
                ["Depthmap Branch", "Pointmap Branch"],
                label="Select a Prediction Mode",
                value="Depthmap Branch",
                scale=1,
                elem_id="my_radio",
            )
            TSDF_mode = gr.Radio(
                ["Yes", "No"],
                label="TSDF integration under Depthmap Branch mode",
                value="Yes",
                scale=1,
                elem_id="my_radio",
            )
            reconstruction_btn = gr.Button("Video Reconstruct")
        with gr.Column(scale=2):
            log_output = gr.Markdown(
                "Please upload a video or point cloud ply file, then click \"PCA Generate\".", elem_classes=["custom-log"]
            )
            original_view = gr.Model3D(height=520, zoom_speed=0.5, pan_speed=0.5, label="Point Cloud Preview", camera_position = (90,None,None))
            processed_view = gr.Model3D(height=520, zoom_speed=0.5, pan_speed=0.5, label="PCA Result", camera_position = (90,None,None))
            with gr.Row():
                if_color = gr.Checkbox(label="Input with Point Cloud Color", value=True)
                if_normal = gr.Checkbox(label="Input with Point Cloud Normal", value=True)
            model_type = gr.Radio(
                ["Concerto", "Sonata"],
                label="Select a Model Type",
                value="Concerto",
                scale=1,
                elem_id="my_radio",
            )
            pca_slider = gr.Slider(minimum=0, maximum=5, value=0, step=1, 
                             label="PCA Start Dimension", interactive=True)
            bright_slider = gr.Slider(minimum=0.5, maximum=1.5, value=1.2, step=0.05, 
                             label="PCA Brightness", interactive=True)
            with gr.Row():
                submit_btn = gr.Button("PCA Generate")
                clear_btn = gr.ClearButton(
                        [input_video, input_file, original_view, processed_view, log_output, target_dir, image_gallery],
                        scale=1,
                        elem_id="my_clear",
                    )

    gr.Markdown("Click any row to load an example.", elem_classes=["example-log"])
    with gr.Row():
        def example_video_updated(
            inputs,
            conf_thres,
            frame_slider,
            prediction_mode,
            TSDF_mode,
            pca_slider,
            bright_slider,
            is_example,
        ):
            return inputs,conf_thres,frame_slider,prediction_mode,TSDF_mode,pca_slider,bright_slider,is_example
        gr.Examples(
            examples=examples_video,
            inputs=[
                input_video,
                conf_thres,
                frame_slider,
                prediction_mode,
                TSDF_mode,
                pca_slider,
                bright_slider,
                is_example,
            ],
            outputs=[
                input_video,
                conf_thres,
                frame_slider,
                prediction_mode,
                TSDF_mode,
                pca_slider,
                bright_slider,
                is_example,
            ],
            label = "Video Examples",
            fn=example_video_updated,
            cache_examples=False,
            examples_per_page=50,
            # examples_per_page=2
        )
    with gr.Row():
        def example_file_updated(
            preview_imgs,
            inputs,
            pca_slider,
            bright_slider,
            is_example,
        ):
            return inputs,pca_slider,bright_slider,is_example
        gr.Examples(
            examples=examples_pcd,
            inputs=[
                preview_imgs,
                input_file,
                pca_slider,
                bright_slider,
                is_example,
            ],
            outputs=[
                input_file,
                pca_slider,
                bright_slider,
                is_example,
            ],
            label = "Point Cloud Examples",
            fn=example_file_updated,
            cache_examples=False,
            examples_per_page=50,
            # examples_per_page=2
        )

    reconstruction_btn.click(
        fn = update_gallery_on_upload,
        inputs = [input_file,input_video,conf_thres,frame_slider,prediction_mode,TSDF_mode],
        outputs = [original_view, target_dir, image_gallery, log_output]
    )
    submit_btn.click(fn=clear_fields, inputs=[], outputs=[processed_view]).then(
        fn=PCAing_log, inputs=[is_example, log_output], outputs=[log_output]
    ).then(
        fn=gradio_demo,
        inputs=[target_dir,pca_slider,bright_slider, model_type, if_color, if_normal],
        outputs=[processed_view,log_output],
    ).then(
        fn=lambda: "False", inputs=[], outputs=[is_example]  # set is_example to "False"
    )

    pca_slider.change(fn=clear_fields, inputs=[], outputs=[processed_view]).then(
        fn=PCAing_log, inputs=[is_example, log_output], outputs=[log_output]
    ).then(
        fn=concerto_slider_update,
        inputs=[target_dir,pca_slider,bright_slider,is_example,log_output],
        outputs=[processed_view, log_output],
    ).then(
        fn=lambda: "False", inputs=[], outputs=[is_example]  # set is_example to "False"
    )
    bright_slider.change(fn=clear_fields, inputs=[], outputs=[processed_view]).then(
        fn=PCAing_log, inputs=[is_example, log_output], outputs=[log_output]
    ).then(
        fn=concerto_slider_update,
        inputs=[target_dir,pca_slider,bright_slider,is_example,log_output],
        outputs=[processed_view, log_output],
    ).then(
        fn=lambda: "False", inputs=[], outputs=[is_example]  # set is_example to "False"
    )
    model_type.change(fn=clear_fields, inputs=[], outputs=[processed_view]).then(
        fn=PCAing_log, inputs=[is_example, log_output], outputs=[log_output]
    ).then(
        fn=gradio_demo,
        inputs=[target_dir,pca_slider,bright_slider, model_type, if_color, if_normal],
        outputs=[processed_view,log_output],
    ).then(
        fn=lambda: "False", inputs=[], outputs=[is_example]  # set is_example to "False"
    )
    
    input_file.change(fn=reset_log, inputs=[], outputs=[log_output]).then(
        fn=update_gallery_on_upload,
        inputs=[input_file,input_video, conf_thres,frame_slider,prediction_mode,TSDF_mode],
        outputs=[original_view, target_dir, _, log_output],
    )

    input_video.change(fn=reset_log, inputs=[], outputs=[log_output]).then(
        fn=update_gallery_on_upload,
        inputs=[input_file,input_video, conf_thres,frame_slider,prediction_mode,TSDF_mode],
        outputs=[original_view, target_dir, image_gallery, log_output],
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch(show_error=True, share=True)