|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
from typing import Optional, Union |
|
|
|
|
|
|
|
|
class KeyLUT: |
|
|
def __init__(self): |
|
|
r256 = torch.arange(256, dtype=torch.int64) |
|
|
r512 = torch.arange(512, dtype=torch.int64) |
|
|
zero = torch.zeros(256, dtype=torch.int64) |
|
|
device = torch.device("cpu") |
|
|
|
|
|
self._encode = { |
|
|
device: ( |
|
|
self.xyz2key(r256, zero, zero, 8), |
|
|
self.xyz2key(zero, r256, zero, 8), |
|
|
self.xyz2key(zero, zero, r256, 8), |
|
|
) |
|
|
} |
|
|
self._decode = {device: self.key2xyz(r512, 9)} |
|
|
|
|
|
def encode_lut(self, device=torch.device("cpu")): |
|
|
if device not in self._encode: |
|
|
cpu = torch.device("cpu") |
|
|
self._encode[device] = tuple(e.to(device) for e in self._encode[cpu]) |
|
|
return self._encode[device] |
|
|
|
|
|
def decode_lut(self, device=torch.device("cpu")): |
|
|
if device not in self._decode: |
|
|
cpu = torch.device("cpu") |
|
|
self._decode[device] = tuple(e.to(device) for e in self._decode[cpu]) |
|
|
return self._decode[device] |
|
|
|
|
|
def xyz2key(self, x, y, z, depth): |
|
|
key = torch.zeros_like(x) |
|
|
for i in range(depth): |
|
|
mask = 1 << i |
|
|
key = ( |
|
|
key |
|
|
| ((x & mask) << (2 * i + 2)) |
|
|
| ((y & mask) << (2 * i + 1)) |
|
|
| ((z & mask) << (2 * i + 0)) |
|
|
) |
|
|
return key |
|
|
|
|
|
def key2xyz(self, key, depth): |
|
|
x = torch.zeros_like(key) |
|
|
y = torch.zeros_like(key) |
|
|
z = torch.zeros_like(key) |
|
|
for i in range(depth): |
|
|
x = x | ((key & (1 << (3 * i + 2))) >> (2 * i + 2)) |
|
|
y = y | ((key & (1 << (3 * i + 1))) >> (2 * i + 1)) |
|
|
z = z | ((key & (1 << (3 * i + 0))) >> (2 * i + 0)) |
|
|
return x, y, z |
|
|
|
|
|
|
|
|
_key_lut = KeyLUT() |
|
|
|
|
|
|
|
|
def xyz2key( |
|
|
x: torch.Tensor, |
|
|
y: torch.Tensor, |
|
|
z: torch.Tensor, |
|
|
b: Optional[Union[torch.Tensor, int]] = None, |
|
|
depth: int = 16, |
|
|
): |
|
|
r"""Encodes :attr:`x`, :attr:`y`, :attr:`z` coordinates to the shuffled keys |
|
|
based on pre-computed look up tables. The speed of this function is much |
|
|
faster than the method based on for-loop. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): The x coordinate. |
|
|
y (torch.Tensor): The y coordinate. |
|
|
z (torch.Tensor): The z coordinate. |
|
|
b (torch.Tensor or int): The batch index of the coordinates, and should be |
|
|
smaller than 32768. If :attr:`b` is :obj:`torch.Tensor`, the size of |
|
|
:attr:`b` must be the same as :attr:`x`, :attr:`y`, and :attr:`z`. |
|
|
depth (int): The depth of the shuffled key, and must be smaller than 17 (< 17). |
|
|
""" |
|
|
|
|
|
EX, EY, EZ = _key_lut.encode_lut(x.device) |
|
|
x, y, z = x.long(), y.long(), z.long() |
|
|
|
|
|
mask = 255 if depth > 8 else (1 << depth) - 1 |
|
|
key = EX[x & mask] | EY[y & mask] | EZ[z & mask] |
|
|
if depth > 8: |
|
|
mask = (1 << (depth - 8)) - 1 |
|
|
key16 = EX[(x >> 8) & mask] | EY[(y >> 8) & mask] | EZ[(z >> 8) & mask] |
|
|
key = key16 << 24 | key |
|
|
|
|
|
if b is not None: |
|
|
b = b.long() |
|
|
key = b << 48 | key |
|
|
|
|
|
return key |
|
|
|
|
|
|
|
|
def key2xyz(key: torch.Tensor, depth: int = 16): |
|
|
r"""Decodes the shuffled key to :attr:`x`, :attr:`y`, :attr:`z` coordinates |
|
|
and the batch index based on pre-computed look up tables. |
|
|
|
|
|
Args: |
|
|
key (torch.Tensor): The shuffled key. |
|
|
depth (int): The depth of the shuffled key, and must be smaller than 17 (< 17). |
|
|
""" |
|
|
|
|
|
DX, DY, DZ = _key_lut.decode_lut(key.device) |
|
|
x, y, z = torch.zeros_like(key), torch.zeros_like(key), torch.zeros_like(key) |
|
|
|
|
|
b = key >> 48 |
|
|
key = key & ((1 << 48) - 1) |
|
|
|
|
|
n = (depth + 2) // 3 |
|
|
for i in range(n): |
|
|
k = key >> (i * 9) & 511 |
|
|
x = x | (DX[k] << (i * 3)) |
|
|
y = y | (DY[k] << (i * 3)) |
|
|
z = z | (DZ[k] << (i * 3)) |
|
|
|
|
|
return x, y, z, b |
|
|
|