Concerto / concerto /structure.py
yujia
init concerto demo
d01e027
"""
Data structure for 3D point cloud
Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com)
Please cite our work if the code is helpful to you.
"""
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import spconv.pytorch as spconv
from addict import Dict
from .serialization import encode
from .utils import offset2batch, batch2offset
class Point(Dict):
"""
Point Structure of Pointcept
A Point (point cloud) in Pointcept is a dictionary that contains various properties of
a batched point cloud. The property with the following names have a specific definition
as follows:
- "coord": original coordinate of point cloud;
- "grid_coord": grid coordinate for specific grid size (related to GridSampling);
Point also support the following optional attributes:
- "offset": if not exist, initialized as batch size is 1;
- "batch": if not exist, initialized as batch size is 1;
- "feat": feature of point cloud, default input of model;
- "grid_size": Grid size of point cloud (related to GridSampling);
(related to Serialization)
- "serialized_depth": depth of serialization, 2 ** depth * grid_size describe the maximum of point cloud range;
- "serialized_code": a list of serialization codes;
- "serialized_order": a list of serialization order determined by code;
- "serialized_inverse": a list of inverse mapping determined by code;
(related to Sparsify: SpConv)
- "sparse_shape": Sparse shape for Sparse Conv Tensor;
- "sparse_conv_feat": SparseConvTensor init with information provide by Point;
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# If one of "offset" or "batch" do not exist, generate by the existing one
if "batch" not in self.keys() and "offset" in self.keys():
self["batch"] = offset2batch(self.offset)
elif "offset" not in self.keys() and "batch" in self.keys():
self["offset"] = batch2offset(self.batch)
def serialization(self, order="z", depth=None, shuffle_orders=False):
"""
Point Cloud Serialization
relay on ["grid_coord" or "coord" + "grid_size", "batch", "feat"]
"""
self["order"] = order
assert "batch" in self.keys()
if "grid_coord" not in self.keys():
# if you don't want to operate GridSampling in data augmentation,
# please add the following augmentation into your pipeline:
# dict(type="Copy", keys_dict={"grid_size": 0.01}),
# (adjust `grid_size` to what your want)
assert {"grid_size", "coord"}.issubset(self.keys())
self["grid_coord"] = torch.div(
self.coord - self.coord.min(0)[0], self.grid_size, rounding_mode="trunc"
).int()
if depth is None:
# Adaptive measure the depth of serialization cube (length = 2 ^ depth)
depth = int(self.grid_coord.max() + 1).bit_length()
self["serialized_depth"] = depth
# Maximum bit length for serialization code is 63 (int64)
assert depth * 3 + len(self.offset).bit_length() <= 63
# Here we follow OCNN and set the depth limitation to 16 (48bit) for the point position.
# Although depth is limited to less than 16, we can encode a 655.36^3 (2^16 * 0.01) meter^3
# cube with a grid size of 0.01 meter. We consider it is enough for the current stage.
# We can unlock the limitation by optimizing the z-order encoding function if necessary.
assert depth <= 16
# The serialization codes are arranged as following structures:
# [Order1 ([n]),
# Order2 ([n]),
# ...
# OrderN ([n])] (k, n)
code = [
encode(self.grid_coord, self.batch, depth, order=order_) for order_ in order
]
code = torch.stack(code)
order = torch.argsort(code)
inverse = torch.zeros_like(order).scatter_(
dim=1,
index=order,
src=torch.arange(0, code.shape[1], device=order.device).repeat(
code.shape[0], 1
),
)
if shuffle_orders:
perm = torch.randperm(code.shape[0])
code = code[perm]
order = order[perm]
inverse = inverse[perm]
self["serialized_code"] = code
self["serialized_order"] = order
self["serialized_inverse"] = inverse
def sparsify(self, pad=96):
"""
Point Cloud Serialization
Point cloud is sparse, here we use "sparsify" to specifically refer to
preparing "spconv.SparseConvTensor" for SpConv.
relay on ["grid_coord" or "coord" + "grid_size", "batch", "feat"]
pad: padding sparse for sparse shape.
"""
assert {"feat", "batch"}.issubset(self.keys())
if "grid_coord" not in self.keys():
# if you don't want to operate GridSampling in data augmentation,
# please add the following augmentation into your pipeline:
# dict(type="Copy", keys_dict={"grid_size": 0.01}),
# (adjust `grid_size` to what your want)
assert {"grid_size", "coord"}.issubset(self.keys())
self["grid_coord"] = torch.div(
self.coord - self.coord.min(0)[0], self.grid_size, rounding_mode="trunc"
).int()
if "sparse_shape" in self.keys():
sparse_shape = self.sparse_shape
else:
sparse_shape = torch.add(
torch.max(self.grid_coord, dim=0).values, pad
).tolist()
sparse_conv_feat = spconv.SparseConvTensor(
features=self.feat,
indices=torch.cat(
[self.batch.unsqueeze(-1).int(), self.grid_coord.int()], dim=1
).contiguous(),
spatial_shape=sparse_shape,
batch_size=self.batch[-1].tolist() + 1,
)
self["sparse_shape"] = sparse_shape
self["sparse_conv_feat"] = sparse_conv_feat