Spaces:
Running
Running
| import gradio as gr | |
| import ctranslate2 | |
| from transformers import AutoTokenizer | |
| from huggingface_hub import snapshot_download | |
| # Define the model and tokenizer loading | |
| model_prompt = "Solve the following mathematical problem: " | |
| tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR") | |
| model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina") | |
| generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8") | |
| # Function to generate predictions using the model | |
| def get_prediction(question): | |
| input_text = model_prompt + question | |
| input_tokens = tokenizer.tokenize(input_text) | |
| results = generator.generate_batch([input_tokens]) | |
| output_tokens = results[0].sequences[0] | |
| predicted_answer = tokenizer.convert_tokens_to_string(output_tokens) | |
| return predicted_answer | |
| # Function to perform majority voting across multiple predictions | |
| def majority_vote(question, num_iterations=10): | |
| all_predictions = [] | |
| for _ in range(num_iterations): | |
| prediction = get_prediction(question) | |
| all_predictions.append(prediction) | |
| majority_voted_pred = max(set(all_predictions), key=all_predictions.count) | |
| return majority_voted_pred, all_predictions | |
| # Gradio interface for user input and output | |
| def gradio_interface(question, correct_answer): | |
| final_prediction, all_predictions = majority_vote(question, num_iterations=10) | |
| return { | |
| "Question": question, | |
| "Generated Answers (10 iterations)": all_predictions, | |
| "Majority-Voted Prediction": final_prediction, | |
| "Correct Answer": correct_answer | |
| } | |
| # Gradio app setup | |
| interface = gr.Interface( | |
| fn=gradio_interface, | |
| inputs=[ | |
| gr.Textbox(label="Math Question"), | |
| gr.Textbox(label="Correct Answer"), | |
| ], | |
| outputs=[ | |
| gr.JSON(label="Results"), # Display the results in a JSON format | |
| ], | |
| title="Math Question Solver", | |
| description="Enter a math question to get the model prediction and see all generated answers.", | |
| ) | |
| if __name__ == "__main__": | |
| interface.launch() | |