Spaces:
Running
Running
added backdooring
Browse files- __pycache__/codeexecutor.cpython-312.pyc +0 -0
- app.py +2 -1
- temp2.py +77 -37
__pycache__/codeexecutor.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/codeexecutor.cpython-312.pyc and b/__pycache__/codeexecutor.cpython-312.pyc differ
|
|
|
app.py
CHANGED
|
@@ -3,7 +3,8 @@ import ctranslate2
|
|
| 3 |
from transformers import AutoTokenizer
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
from codeexecutor import get_majority_vote,type_check,postprocess_completion,draw_polynomial_plot
|
| 6 |
-
|
|
|
|
| 7 |
|
| 8 |
import re
|
| 9 |
import os
|
|
|
|
| 3 |
from transformers import AutoTokenizer
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
from codeexecutor import get_majority_vote,type_check,postprocess_completion,draw_polynomial_plot
|
| 6 |
+
import base64
|
| 7 |
+
from io import BytesIO
|
| 8 |
|
| 9 |
import re
|
| 10 |
import os
|
temp2.py
CHANGED
|
@@ -1,35 +1,58 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
iterations = 4
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
def get_prediction(question):
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Function to parse the prediction to extract the answer and steps
|
| 10 |
def parse_prediction(prediction):
|
| 11 |
lines = prediction.strip().split('\n')
|
| 12 |
answer = None
|
| 13 |
steps = []
|
| 14 |
-
for line in lines:
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
steps_text = '\n'.join(steps).strip()
|
| 24 |
return answer, steps_text
|
| 25 |
|
| 26 |
-
# Function to extract boxed answers
|
| 27 |
-
def extract_boxed_answer(text):
|
| 28 |
-
match = re.search(r'\\boxed\{(.*?)\}', text)
|
| 29 |
-
if match:
|
| 30 |
-
return match.group(1)
|
| 31 |
-
return None
|
| 32 |
-
|
| 33 |
# Function to perform majority voting and get steps
|
| 34 |
def majority_vote_with_steps(question, num_iterations=10):
|
| 35 |
all_predictions = []
|
|
@@ -39,6 +62,7 @@ def majority_vote_with_steps(question, num_iterations=10):
|
|
| 39 |
for _ in range(num_iterations):
|
| 40 |
prediction = get_prediction(question)
|
| 41 |
answer, success = postprocess_completion(prediction, return_status=True, last_code_block=True)
|
|
|
|
| 42 |
|
| 43 |
if success:
|
| 44 |
all_predictions.append(prediction)
|
|
@@ -49,14 +73,14 @@ def majority_vote_with_steps(question, num_iterations=10):
|
|
| 49 |
all_predictions.append(prediction)
|
| 50 |
all_answers.append(answer)
|
| 51 |
steps_list.append(steps)
|
| 52 |
-
|
| 53 |
if success:
|
| 54 |
-
|
| 55 |
expression = majority_voted_ans
|
| 56 |
if type_check(expression) == "Polynomial":
|
| 57 |
plotfile = draw_polynomial_plot(expression)
|
| 58 |
else:
|
| 59 |
-
plotfile =
|
| 60 |
|
| 61 |
# Find the steps corresponding to the majority voted answer
|
| 62 |
for i, ans in enumerate(all_answers):
|
|
@@ -70,23 +94,39 @@ def majority_vote_with_steps(question, num_iterations=10):
|
|
| 70 |
|
| 71 |
return answer, steps_solution, plotfile
|
| 72 |
|
| 73 |
-
# Function to handle chat-like interaction
|
| 74 |
def chat_interface(history, question):
|
| 75 |
final_answer, steps_solution, plotfile = majority_vote_with_steps(question, iterations)
|
| 76 |
-
history.append(("User", question))
|
| 77 |
-
history.append(("MathBot", f"Answer: {final_answer}\nSteps:\n{steps_solution}"))
|
| 78 |
-
return history, plotfile
|
| 79 |
-
|
| 80 |
-
# Gradio app setup using Blocks for layout management
|
| 81 |
-
with gr.Blocks() as interface:
|
| 82 |
-
with gr.Column():
|
| 83 |
-
chat_history = gr.Chatbot(label="Chat with MathBot", elem_id="chat_history")
|
| 84 |
-
math_question = gr.Textbox(label="Your Question", placeholder="Ask a math question...", elem_id="math_question")
|
| 85 |
-
chatbot_output = gr.Chatbot(label="Chat History")
|
| 86 |
-
polynomial_plot = gr.Image(label="Polynomial Plot")
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
# import ctranslate2
|
| 3 |
+
# from transformers import AutoTokenizer
|
| 4 |
+
# from huggingface_hub import snapshot_download
|
| 5 |
+
from codeexecutor import get_majority_vote,type_check,postprocess_completion,draw_polynomial_plot
|
| 6 |
+
import base64
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
|
| 9 |
import re
|
| 10 |
+
import os
|
| 11 |
+
# Define the model and tokenizer loading
|
| 12 |
+
# model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
|
| 13 |
+
# tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
| 14 |
+
# model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
| 15 |
+
# generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
| 16 |
iterations = 4
|
| 17 |
+
test=True
|
| 18 |
+
|
| 19 |
+
# Function to generate predictions using the model
|
| 20 |
def get_prediction(question):
|
| 21 |
+
if test==True:
|
| 22 |
+
text="Solve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).\n"
|
| 23 |
+
|
| 24 |
+
return text
|
| 25 |
+
# input_text = model_prompt + question
|
| 26 |
+
# input_tokens = tokenizer.tokenize(input_text)
|
| 27 |
+
# results = generator.generate_batch(
|
| 28 |
+
# [input_tokens],
|
| 29 |
+
# max_length=512,
|
| 30 |
+
# sampling_temperature=0.7,
|
| 31 |
+
# sampling_topk=40,
|
| 32 |
+
# )
|
| 33 |
+
# output_tokens = results[0].sequences[0]
|
| 34 |
+
# predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
| 35 |
+
# return predicted_answer
|
| 36 |
|
| 37 |
# Function to parse the prediction to extract the answer and steps
|
| 38 |
def parse_prediction(prediction):
|
| 39 |
lines = prediction.strip().split('\n')
|
| 40 |
answer = None
|
| 41 |
steps = []
|
| 42 |
+
# for line in lines:
|
| 43 |
+
# # Check for "Answer:" or "answer:"
|
| 44 |
+
# match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
|
| 45 |
+
# if match:
|
| 46 |
+
# answer = match.group(1).strip()
|
| 47 |
+
# else:
|
| 48 |
+
# answer=lines[-1].strip()
|
| 49 |
+
# if answer is None:
|
| 50 |
+
# # If no "Answer:" found, assume last line is the answer
|
| 51 |
+
answer = lines[-1].strip()
|
| 52 |
+
steps = lines
|
| 53 |
steps_text = '\n'.join(steps).strip()
|
| 54 |
return answer, steps_text
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
# Function to perform majority voting and get steps
|
| 57 |
def majority_vote_with_steps(question, num_iterations=10):
|
| 58 |
all_predictions = []
|
|
|
|
| 62 |
for _ in range(num_iterations):
|
| 63 |
prediction = get_prediction(question)
|
| 64 |
answer, success = postprocess_completion(prediction, return_status=True, last_code_block=True)
|
| 65 |
+
print(answer,success)
|
| 66 |
|
| 67 |
if success:
|
| 68 |
all_predictions.append(prediction)
|
|
|
|
| 73 |
all_predictions.append(prediction)
|
| 74 |
all_answers.append(answer)
|
| 75 |
steps_list.append(steps)
|
| 76 |
+
majority_voted_ans = get_majority_vote(all_answers)
|
| 77 |
if success:
|
| 78 |
+
|
| 79 |
expression = majority_voted_ans
|
| 80 |
if type_check(expression) == "Polynomial":
|
| 81 |
plotfile = draw_polynomial_plot(expression)
|
| 82 |
else:
|
| 83 |
+
plotfile = "polynomial_plot.png"
|
| 84 |
|
| 85 |
# Find the steps corresponding to the majority voted answer
|
| 86 |
for i, ans in enumerate(all_answers):
|
|
|
|
| 94 |
|
| 95 |
return answer, steps_solution, plotfile
|
| 96 |
|
| 97 |
+
# Function to handle chat-like interaction and merge plot into chat history
|
| 98 |
def chat_interface(history, question):
|
| 99 |
final_answer, steps_solution, plotfile = majority_vote_with_steps(question, iterations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
# Convert the plot image to base64 for embedding in chat (if plot exists)
|
| 102 |
+
if plotfile:
|
| 103 |
+
history.append(("what is the sum of polynomial 2x+3 and 3x?", f"Answer: \n{steps_solution}"))
|
| 104 |
+
|
| 105 |
+
with open(plotfile, "rb") as image_file:
|
| 106 |
+
image_bytes = image_file.read()
|
| 107 |
+
base64_image = base64.b64encode(image_bytes).decode("utf-8")
|
| 108 |
+
image_data = f'<img src="data:image/png;base64,{base64_image}" width="300"/>'
|
| 109 |
+
history.append(("", image_data))
|
| 110 |
+
else:
|
| 111 |
+
history.append(("MathBot", f"Answer: \n{steps_solution}"))
|
| 112 |
+
|
| 113 |
+
return history
|
| 114 |
|
| 115 |
+
custom_css = """
|
| 116 |
+
#math_question label {
|
| 117 |
+
font-size: 20px; /* Increase label font size */
|
| 118 |
+
font-weight: bold; /* Optional: make the label bold */
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
#math_question textarea {
|
| 122 |
+
font-size: 20px; /* Increase font size */
|
| 123 |
+
}
|
| 124 |
+
"""
|
| 125 |
+
# Gradio app setup using Blocks
|
| 126 |
+
with gr.Blocks(css=custom_css) as interface:
|
| 127 |
+
chatbot = gr.Chatbot(label="Chat with MathBot", elem_id="chat_history",height="70vh")
|
| 128 |
+
math_question = gr.Textbox(label="Your Question", placeholder="Ask a math question...", elem_id="math_question")
|
| 129 |
+
|
| 130 |
+
math_question.submit(chat_interface, inputs=[chatbot, math_question], outputs=[chatbot])
|
| 131 |
|
| 132 |
+
interface.launch()
|
|
|