Spaces:
Running
Running
added model path
Browse files
app.py
CHANGED
|
@@ -35,7 +35,7 @@ from transformers import (
|
|
| 35 |
n_repetitions = 1
|
| 36 |
TOTAL_TOKENS = 2048
|
| 37 |
|
| 38 |
-
MODEL_PATH = "/
|
| 39 |
#"/kaggle/input/gemma/transformers/7b-it/1"
|
| 40 |
|
| 41 |
# DEEP = True
|
|
|
|
| 35 |
n_repetitions = 1
|
| 36 |
TOTAL_TOKENS = 2048
|
| 37 |
|
| 38 |
+
MODEL_PATH = "Pra-tham/quant_deepseekmath"
|
| 39 |
#"/kaggle/input/gemma/transformers/7b-it/1"
|
| 40 |
|
| 41 |
# DEEP = True
|
backup.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
# from huggingface_hub import InferenceClient
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
+
"""
|
| 7 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, set_seed
|
| 9 |
+
# from accelerate import infer_auto_device_map as iadm
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 13 |
+
|
| 14 |
+
model_name = "deepseek-ai/deepseek-math-7b-instruct"
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 17 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
| 18 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def evaluate_response(problem):
|
| 24 |
+
# problem=b'what is angle x if angle y is 60 degree and angle z in 60 degree of a traingle'
|
| 25 |
+
problem=problem+'\nPlease reason step by step, and put your final answer within \\boxed{}.'
|
| 26 |
+
messages = [
|
| 27 |
+
{"role": "user", "content": problem}
|
| 28 |
+
]
|
| 29 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
| 30 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
| 31 |
+
|
| 32 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
| 33 |
+
# result_output, code_output = process_output(raw_output)
|
| 34 |
+
return result
|
| 35 |
+
|
| 36 |
+
# def respond(
|
| 37 |
+
# evaluate_response,
|
| 38 |
+
# history: list[tuple[str, str]],
|
| 39 |
+
# system_message,
|
| 40 |
+
# max_tokens,
|
| 41 |
+
# temperature,
|
| 42 |
+
# top_p,
|
| 43 |
+
# ):
|
| 44 |
+
# messages = [{"role": "system", "content": system_message}]
|
| 45 |
+
|
| 46 |
+
# for val in history:
|
| 47 |
+
# if val[0]:
|
| 48 |
+
# messages.append({"role": "user", "content": val[0]})
|
| 49 |
+
# if val[1]:
|
| 50 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
| 51 |
+
|
| 52 |
+
# messages.append({"role": "user", "content": message})
|
| 53 |
+
|
| 54 |
+
# response = ""
|
| 55 |
+
|
| 56 |
+
# for message in client.chat_completion(
|
| 57 |
+
# messages,
|
| 58 |
+
# max_tokens=max_tokens,
|
| 59 |
+
# stream=True,
|
| 60 |
+
# temperature=temperature,
|
| 61 |
+
# top_p=top_p,
|
| 62 |
+
# ):
|
| 63 |
+
# token = message.choices[0].delta.content
|
| 64 |
+
|
| 65 |
+
# response += token
|
| 66 |
+
# yield response
|
| 67 |
+
|
| 68 |
+
"""
|
| 69 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 70 |
+
"""
|
| 71 |
+
# demo = gr.ChatInterface(
|
| 72 |
+
# evaluate_response,
|
| 73 |
+
# additional_inputs=[
|
| 74 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 75 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 76 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 77 |
+
# gr.Slider(
|
| 78 |
+
# minimum=0.1,
|
| 79 |
+
# maximum=1.0,
|
| 80 |
+
# value=0.95,
|
| 81 |
+
# step=0.05,
|
| 82 |
+
# label="Top-p (nucleus sampling)",
|
| 83 |
+
# ),
|
| 84 |
+
# ],
|
| 85 |
+
# )
|
| 86 |
+
|
| 87 |
+
demo = gr.Interface(
|
| 88 |
+
fn=evaluate_response,
|
| 89 |
+
inputs=[gr.Textbox(label="Question")],
|
| 90 |
+
outputs=gr.Textbox(label="Answer"),
|
| 91 |
+
title="Question and Answer Interface",
|
| 92 |
+
description="Enter a question."
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
if __name__ == "__main__":
|
| 97 |
+
demo.launch()
|
utils.py
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import math
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
from collections import defaultdict
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def naive_parse(answer):
|
| 11 |
+
out = []
|
| 12 |
+
start = False
|
| 13 |
+
end = False
|
| 14 |
+
for l in reversed(list(answer)):
|
| 15 |
+
if l in '0123456789' and not end:
|
| 16 |
+
start = True
|
| 17 |
+
out.append(l)
|
| 18 |
+
else:
|
| 19 |
+
if start:
|
| 20 |
+
end = True
|
| 21 |
+
|
| 22 |
+
out = reversed(out)
|
| 23 |
+
return ''.join(out)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
import re
|
| 27 |
+
import sys
|
| 28 |
+
import subprocess
|
| 29 |
+
|
| 30 |
+
def return_last_print(output, n):
|
| 31 |
+
lines = output.strip().split('\n')
|
| 32 |
+
if lines:
|
| 33 |
+
return lines[n]
|
| 34 |
+
else:
|
| 35 |
+
return ""
|
| 36 |
+
|
| 37 |
+
def process_code(code, return_shell_output=False):
|
| 38 |
+
|
| 39 |
+
def repl(match):
|
| 40 |
+
if "real" not in match.group():
|
| 41 |
+
return "{}{}".format(match.group()[:-1], ', real=True)')
|
| 42 |
+
else:
|
| 43 |
+
return "{}{}".format(match.group()[:-1], ')')
|
| 44 |
+
code = re.sub(r"symbols\([^)]+\)", repl, code)
|
| 45 |
+
|
| 46 |
+
if return_shell_output:
|
| 47 |
+
code = code.replace('\n', '\n ')
|
| 48 |
+
# Add a try...except block
|
| 49 |
+
code = "\ntry:\n from sympy import *\n{}\nexcept Exception as e:\n print(e)\n print('FAIL')\n".format(code)
|
| 50 |
+
|
| 51 |
+
if not return_shell_output:
|
| 52 |
+
print(code)
|
| 53 |
+
with open('code.py', 'w') as fout:
|
| 54 |
+
fout.write(code)
|
| 55 |
+
|
| 56 |
+
batcmd = 'timeout 7 ' + sys.executable + ' code.py'
|
| 57 |
+
try:
|
| 58 |
+
shell_output = subprocess.check_output(batcmd, shell=True).decode('utf8')
|
| 59 |
+
return_value = return_last_print(shell_output, -1)
|
| 60 |
+
print(shell_output)
|
| 61 |
+
if return_shell_output:
|
| 62 |
+
if return_value=='FAIL':
|
| 63 |
+
CODE_STATUS = False
|
| 64 |
+
return_value = return_last_print(shell_output, -2)
|
| 65 |
+
if "not defined" in return_value:
|
| 66 |
+
return_value+='\nTry checking the formatting and imports'
|
| 67 |
+
else:
|
| 68 |
+
CODE_STATUS = True
|
| 69 |
+
return return_value, CODE_STATUS
|
| 70 |
+
code_output = round(float(eval(return_value))) % 1000
|
| 71 |
+
except Exception as e:
|
| 72 |
+
print(e,'shell_output')
|
| 73 |
+
code_output = -1
|
| 74 |
+
|
| 75 |
+
if return_shell_output:
|
| 76 |
+
if code_output==-1:
|
| 77 |
+
CODE_STATUS = False
|
| 78 |
+
else:
|
| 79 |
+
CODE_STATUS = True
|
| 80 |
+
return code_output, CODE_STATUS
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
return code_output
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def process_text_output(output):
|
| 87 |
+
result = output
|
| 88 |
+
try:
|
| 89 |
+
result_output = re.findall(r'\\boxed\{(\d+)\}', result)
|
| 90 |
+
|
| 91 |
+
print('BOXED', result_output)
|
| 92 |
+
if not len(result_output):
|
| 93 |
+
result_output = naive_parse(result)
|
| 94 |
+
else:
|
| 95 |
+
result_output = result_output[-1]
|
| 96 |
+
|
| 97 |
+
print('BOXED FINAL', result_output)
|
| 98 |
+
if not len(result_output):
|
| 99 |
+
result_output = -1
|
| 100 |
+
|
| 101 |
+
else:
|
| 102 |
+
result_output = round(float(eval(result_output))) % 1000
|
| 103 |
+
|
| 104 |
+
except Exception as e:
|
| 105 |
+
print(e)
|
| 106 |
+
print('ERROR PARSING TEXT')
|
| 107 |
+
result_output = -1
|
| 108 |
+
|
| 109 |
+
return result_output
|
| 110 |
+
|
| 111 |
+
from collections import defaultdict
|
| 112 |
+
from collections import Counter
|
| 113 |
+
def predict(problem):
|
| 114 |
+
|
| 115 |
+
temperature = 0.9
|
| 116 |
+
top_p = 3.0
|
| 117 |
+
|
| 118 |
+
temperature_coding = 0.9
|
| 119 |
+
top_p_coding = 3.0
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
total_results = {}
|
| 123 |
+
total_answers = {}
|
| 124 |
+
best_stats = {}
|
| 125 |
+
total_outputs = {}
|
| 126 |
+
question_type_counts = {}
|
| 127 |
+
starting_counts = (2,3)
|
| 128 |
+
i = 0
|
| 129 |
+
|
| 130 |
+
global n_repetitions,TOTAL_TOKENS,model,tokenizer,USE_PAST_KEY,NOTEBOOK_START_TIME,promplt_options,code,cot
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
for jj in tqdm(range(n_repetitions)):
|
| 135 |
+
best, best_count = best_stats.get(i,(-1,-1))
|
| 136 |
+
if best_count>np.sqrt(jj):
|
| 137 |
+
print("SKIPPING CAUSE ALREADY FOUND BEST")
|
| 138 |
+
continue
|
| 139 |
+
|
| 140 |
+
outputs = total_outputs.get(i,[])
|
| 141 |
+
text_answers, code_answers = question_type_counts.get(i,starting_counts)
|
| 142 |
+
results = total_results.get(i,[])
|
| 143 |
+
answers = total_answers.get(i,[])
|
| 144 |
+
|
| 145 |
+
for _ in range(5):
|
| 146 |
+
torch.cuda.empty_cache()
|
| 147 |
+
gc.collect()
|
| 148 |
+
time.sleep(0.2)
|
| 149 |
+
|
| 150 |
+
try:
|
| 151 |
+
ALREADY_GEN = 0
|
| 152 |
+
code_error = None
|
| 153 |
+
code_error_count = 0
|
| 154 |
+
code_output = -1
|
| 155 |
+
#initail_message = problem + tool_instruction
|
| 156 |
+
counts = np.array([text_answers,code_answers])
|
| 157 |
+
|
| 158 |
+
draw = choice(promplt_options, 1,
|
| 159 |
+
p=counts/counts.sum())
|
| 160 |
+
|
| 161 |
+
initail_message = draw[0].format(problem,"{}")
|
| 162 |
+
prompt = f"User: {initail_message}"
|
| 163 |
+
|
| 164 |
+
current_printed = len(prompt)
|
| 165 |
+
print(f"{jj}_{prompt}\n")
|
| 166 |
+
|
| 167 |
+
model_inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
| 168 |
+
input_len = len(model_inputs['input_ids'][0])
|
| 169 |
+
|
| 170 |
+
generation_output = model.generate(**model_inputs,
|
| 171 |
+
max_new_tokens=TOTAL_TOKENS-ALREADY_GEN,
|
| 172 |
+
return_dict_in_generate=USE_PAST_KEY,
|
| 173 |
+
do_sample = True,
|
| 174 |
+
temperature = temperature,
|
| 175 |
+
top_p = top_p,
|
| 176 |
+
num_return_sequences=1, stopping_criteria = stopping_criteria)
|
| 177 |
+
|
| 178 |
+
if USE_PAST_KEY:
|
| 179 |
+
output_ids = generation_output.sequences[0]
|
| 180 |
+
else:
|
| 181 |
+
output_ids = generation_output[0]
|
| 182 |
+
decoded_output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 183 |
+
print(f"{decoded_output[current_printed:]}\n")
|
| 184 |
+
current_printed += len(decoded_output[current_printed:])
|
| 185 |
+
cummulative_code = ""
|
| 186 |
+
|
| 187 |
+
stop_word_cond = False
|
| 188 |
+
for stop_word in stop_words:
|
| 189 |
+
stop_word_cond = stop_word_cond or (decoded_output[-len(stop_word):]==stop_word)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
while (stop_word_cond) and (ALREADY_GEN<(TOTAL_TOKENS)):
|
| 193 |
+
|
| 194 |
+
if (decoded_output[-len("```python"):]=="```python"):
|
| 195 |
+
temperature_inner=temperature_coding
|
| 196 |
+
top_p_inner = top_p_coding
|
| 197 |
+
prompt = decoded_output
|
| 198 |
+
else:
|
| 199 |
+
temperature_inner=temperature
|
| 200 |
+
top_p_inner = top_p
|
| 201 |
+
try:
|
| 202 |
+
if (decoded_output[-len("``````output"):]=="``````output"):
|
| 203 |
+
code_text = decoded_output.split('```python')[-1].split("``````")[0]
|
| 204 |
+
else:
|
| 205 |
+
code_text = decoded_output.split('```python')[-1].split("```")[0]
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
cummulative_code+=code_text
|
| 209 |
+
code_output, CODE_STATUS = process_code(cummulative_code, return_shell_output=True)
|
| 210 |
+
print('CODE RESULTS', code_output)
|
| 211 |
+
|
| 212 |
+
if code_error==code_output:
|
| 213 |
+
code_error_count+=1
|
| 214 |
+
else:
|
| 215 |
+
code_error=code_output
|
| 216 |
+
code_error_count = 0
|
| 217 |
+
|
| 218 |
+
if not CODE_STATUS:
|
| 219 |
+
cummulative_code = cummulative_code[:-len(code_text)]
|
| 220 |
+
|
| 221 |
+
if code_error_count>=1:
|
| 222 |
+
print("REPEATED ERRORS")
|
| 223 |
+
break
|
| 224 |
+
|
| 225 |
+
except Exception as e:
|
| 226 |
+
print(e)
|
| 227 |
+
print('ERROR PARSING CODE')
|
| 228 |
+
code_output = -1
|
| 229 |
+
|
| 230 |
+
if code_output!=-1:
|
| 231 |
+
if (decoded_output[-len(")\n```"):]==")\n```"):
|
| 232 |
+
prompt = decoded_output+'```output\n'+str(code_output)+'\n```\n'
|
| 233 |
+
else:
|
| 234 |
+
prompt = decoded_output+'\n'+str(code_output)+'\n```\n'
|
| 235 |
+
else:
|
| 236 |
+
prompt = decoded_output
|
| 237 |
+
cummulative_code=""
|
| 238 |
+
model_inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
| 239 |
+
ALREADY_GEN = len(model_inputs['input_ids'][0])-input_len
|
| 240 |
+
|
| 241 |
+
if USE_PAST_KEY:
|
| 242 |
+
old_values = generation_output.past_key_values
|
| 243 |
+
else:
|
| 244 |
+
old_values = None
|
| 245 |
+
|
| 246 |
+
generation_output = model.generate(**model_inputs,
|
| 247 |
+
max_new_tokens=TOTAL_TOKENS-ALREADY_GEN,
|
| 248 |
+
return_dict_in_generate=USE_PAST_KEY,
|
| 249 |
+
past_key_values=old_values,
|
| 250 |
+
do_sample = True,
|
| 251 |
+
temperature = temperature_inner,
|
| 252 |
+
top_p = top_p_inner,
|
| 253 |
+
num_return_sequences=1, stopping_criteria = stopping_criteria)
|
| 254 |
+
if USE_PAST_KEY:
|
| 255 |
+
output_ids = generation_output.sequences[0]
|
| 256 |
+
else:
|
| 257 |
+
output_ids = generation_output[0]
|
| 258 |
+
decoded_output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 259 |
+
print(f"\nINTERMEDIATE OUT :\n{decoded_output[current_printed:]}\n")
|
| 260 |
+
current_printed+=len(decoded_output[current_printed:])
|
| 261 |
+
|
| 262 |
+
stop_word_cond = False
|
| 263 |
+
for stop_word in stop_words:
|
| 264 |
+
stop_word_cond = stop_word_cond or (decoded_output[-len(stop_word):]==stop_word)
|
| 265 |
+
if USE_PAST_KEY:
|
| 266 |
+
output_ids = generation_output.sequences[0]
|
| 267 |
+
else:
|
| 268 |
+
output_ids = generation_output[0]
|
| 269 |
+
|
| 270 |
+
raw_output = tokenizer.decode(output_ids[input_len:], skip_special_tokens=True)
|
| 271 |
+
#print(f"\n\nOutput :\n{raw_output}\n")
|
| 272 |
+
result_output = process_text_output(raw_output)
|
| 273 |
+
|
| 274 |
+
try:
|
| 275 |
+
code_output = round(float(eval(code_output))) % 1000
|
| 276 |
+
except Exception as e:
|
| 277 |
+
print(e,'final_eval')
|
| 278 |
+
code_output = -1
|
| 279 |
+
except Exception as e:
|
| 280 |
+
print(e,"5")
|
| 281 |
+
result_output, code_output = -1, -1
|
| 282 |
+
|
| 283 |
+
if code_output!=-1:
|
| 284 |
+
outputs.append(code_output)
|
| 285 |
+
code_answers+=1
|
| 286 |
+
|
| 287 |
+
if result_output!=-1:
|
| 288 |
+
outputs.append(result_output)
|
| 289 |
+
text_answers+=1
|
| 290 |
+
|
| 291 |
+
if len(outputs) > 0:
|
| 292 |
+
occurances = Counter(outputs).most_common()
|
| 293 |
+
print(occurances)
|
| 294 |
+
if occurances[0][1] > best_count:
|
| 295 |
+
print("GOOD ANSWER UPDATED!")
|
| 296 |
+
best = occurances[0][0]
|
| 297 |
+
best_count = occurances[0][1]
|
| 298 |
+
if occurances[0][1] > 5:
|
| 299 |
+
print("ANSWER FOUND!")
|
| 300 |
+
break
|
| 301 |
+
|
| 302 |
+
results.append(result_output)
|
| 303 |
+
answers.append(code_output)
|
| 304 |
+
|
| 305 |
+
best_stats[i] = (best, best_count)
|
| 306 |
+
question_type_counts[i] = (text_answers, code_answers)
|
| 307 |
+
total_outputs[i] = outputs
|
| 308 |
+
|
| 309 |
+
total_results[i] = results
|
| 310 |
+
total_answers[i] = answers
|
| 311 |
+
|
| 312 |
+
print("code_answers",code_answers-starting_counts[1],"text_answers",text_answers-starting_counts[0])
|
| 313 |
+
return best_stats[0][0]
|