|  | import argparse | 
					
						
						|  | import cv2 | 
					
						
						|  | import glob | 
					
						
						|  | import numpy as np | 
					
						
						|  | import os | 
					
						
						|  | import torch | 
					
						
						|  | from basicsr.utils import imwrite | 
					
						
						|  |  | 
					
						
						|  | from gfpgan import GFPGANer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  | """Inference demo for GFPGAN (for users). | 
					
						
						|  | """ | 
					
						
						|  | parser = argparse.ArgumentParser() | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | '-i', | 
					
						
						|  | '--input', | 
					
						
						|  | type=str, | 
					
						
						|  | default='inputs/whole_imgs', | 
					
						
						|  | help='Input image or folder. Default: inputs/whole_imgs') | 
					
						
						|  | parser.add_argument('-o', '--output', type=str, default='results', help='Output folder. Default: results') | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | '-v', '--version', type=str, default='1.3', help='GFPGAN model version. Option: 1 | 1.2 | 1.3. Default: 1.3') | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | '-s', '--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2') | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | '--bg_upsampler', type=str, default='realesrgan', help='background upsampler. Default: realesrgan') | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | '--bg_tile', | 
					
						
						|  | type=int, | 
					
						
						|  | default=400, | 
					
						
						|  | help='Tile size for background sampler, 0 for no tile during testing. Default: 400') | 
					
						
						|  | parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces') | 
					
						
						|  | parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face') | 
					
						
						|  | parser.add_argument('--aligned', action='store_true', help='Input are aligned faces') | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | '--ext', | 
					
						
						|  | type=str, | 
					
						
						|  | default='auto', | 
					
						
						|  | help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto') | 
					
						
						|  | parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights.') | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if args.input.endswith('/'): | 
					
						
						|  | args.input = args.input[:-1] | 
					
						
						|  | if os.path.isfile(args.input): | 
					
						
						|  | img_list = [args.input] | 
					
						
						|  | else: | 
					
						
						|  | img_list = sorted(glob.glob(os.path.join(args.input, '*'))) | 
					
						
						|  |  | 
					
						
						|  | os.makedirs(args.output, exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if args.bg_upsampler == 'realesrgan': | 
					
						
						|  | if not torch.cuda.is_available(): | 
					
						
						|  | import warnings | 
					
						
						|  | warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. ' | 
					
						
						|  | 'If you really want to use it, please modify the corresponding codes.') | 
					
						
						|  | bg_upsampler = None | 
					
						
						|  | else: | 
					
						
						|  | from basicsr.archs.rrdbnet_arch import RRDBNet | 
					
						
						|  | from realesrgan import RealESRGANer | 
					
						
						|  | model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) | 
					
						
						|  | bg_upsampler = RealESRGANer( | 
					
						
						|  | scale=2, | 
					
						
						|  | model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', | 
					
						
						|  | model=model, | 
					
						
						|  | tile=args.bg_tile, | 
					
						
						|  | tile_pad=10, | 
					
						
						|  | pre_pad=0, | 
					
						
						|  | half=True) | 
					
						
						|  | else: | 
					
						
						|  | bg_upsampler = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if args.version == '1': | 
					
						
						|  | arch = 'original' | 
					
						
						|  | channel_multiplier = 1 | 
					
						
						|  | model_name = 'GFPGANv1' | 
					
						
						|  | url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth' | 
					
						
						|  | elif args.version == '1.2': | 
					
						
						|  | arch = 'clean' | 
					
						
						|  | channel_multiplier = 2 | 
					
						
						|  | model_name = 'GFPGANCleanv1-NoCE-C2' | 
					
						
						|  | url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth' | 
					
						
						|  | elif args.version == '1.3': | 
					
						
						|  | arch = 'clean' | 
					
						
						|  | channel_multiplier = 2 | 
					
						
						|  | model_name = 'GFPGANv1.3' | 
					
						
						|  | url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth' | 
					
						
						|  | elif args.version == '1.4': | 
					
						
						|  | arch = 'clean' | 
					
						
						|  | channel_multiplier = 2 | 
					
						
						|  | model_name = 'GFPGANv1.4' | 
					
						
						|  | url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth' | 
					
						
						|  | elif args.version == 'RestoreFormer': | 
					
						
						|  | arch = 'RestoreFormer' | 
					
						
						|  | channel_multiplier = 2 | 
					
						
						|  | model_name = 'RestoreFormer' | 
					
						
						|  | url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth' | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f'Wrong model version {args.version}.') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_path = os.path.join('gfpgan/weights', f'{model_name}.pth') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | restorer = GFPGANer( | 
					
						
						|  | model_path=model_path, | 
					
						
						|  | upscale=args.upscale, | 
					
						
						|  | arch=arch, | 
					
						
						|  | channel_multiplier=channel_multiplier, | 
					
						
						|  | bg_upsampler=bg_upsampler) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for img_path in img_list: | 
					
						
						|  |  | 
					
						
						|  | img_name = os.path.basename(img_path) | 
					
						
						|  | print(f'Processing {img_name} ...') | 
					
						
						|  | basename, ext = os.path.splitext(img_name) | 
					
						
						|  | input_img = cv2.imread(img_path, cv2.IMREAD_COLOR) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cropped_faces, restored_faces, restored_img = restorer.enhance( | 
					
						
						|  | input_img, | 
					
						
						|  | has_aligned=args.aligned, | 
					
						
						|  | only_center_face=args.only_center_face, | 
					
						
						|  | paste_back=True, | 
					
						
						|  | weight=args.weight) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)): | 
					
						
						|  |  | 
					
						
						|  | save_crop_path = os.path.join(args.output, 'cropped_faces', f'{basename}_{idx:02d}.png') | 
					
						
						|  | imwrite(cropped_face, save_crop_path) | 
					
						
						|  |  | 
					
						
						|  | if args.suffix is not None: | 
					
						
						|  | save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png' | 
					
						
						|  | else: | 
					
						
						|  | save_face_name = f'{basename}_{idx:02d}.png' | 
					
						
						|  | save_restore_path = os.path.join(args.output, 'restored_faces', save_face_name) | 
					
						
						|  | imwrite(restored_face, save_restore_path) | 
					
						
						|  |  | 
					
						
						|  | cmp_img = np.concatenate((cropped_face, restored_face), axis=1) | 
					
						
						|  | imwrite(cmp_img, os.path.join(args.output, 'cmp', f'{basename}_{idx:02d}.png')) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if restored_img is not None: | 
					
						
						|  | if args.ext == 'auto': | 
					
						
						|  | extension = ext[1:] | 
					
						
						|  | else: | 
					
						
						|  | extension = args.ext | 
					
						
						|  |  | 
					
						
						|  | if args.suffix is not None: | 
					
						
						|  | save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}_{args.suffix}.{extension}') | 
					
						
						|  | else: | 
					
						
						|  | save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}.{extension}') | 
					
						
						|  | imwrite(restored_img, save_restore_path) | 
					
						
						|  |  | 
					
						
						|  | print(f'Results are in the [{args.output}] folder.') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == '__main__': | 
					
						
						|  | main() | 
					
						
						|  |  |