Spaces:
Sleeping
Sleeping
Pranjal Gupta
commited on
Commit
·
75c55bc
1
Parent(s):
52e00f2
token added
Browse files
app.py
CHANGED
|
@@ -68,7 +68,18 @@ def process_pdf(file_path):
|
|
| 68 |
gr.Info("PDF processed and ready for questions!")
|
| 69 |
|
| 70 |
# Your existing functions
|
| 71 |
-
def using_ollama_model(retriever, query, results, conversation_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
history_text = ""
|
| 73 |
for item in conversation_history:
|
| 74 |
if "question" in item and item["question"]:
|
|
@@ -111,7 +122,7 @@ def using_ollama_model(retriever, query, results, conversation_history):
|
|
| 111 |
|
| 112 |
return answer
|
| 113 |
|
| 114 |
-
def retrievingReponse(docId, query, conversation_history):
|
| 115 |
retriever = vectorDB.as_retriever(
|
| 116 |
search_type="similarity",
|
| 117 |
search_kwargs={
|
|
@@ -130,11 +141,11 @@ def retrievingReponse(docId, query, conversation_history):
|
|
| 130 |
unique_results.append(ans)
|
| 131 |
seen_texts.add(result.page_content)
|
| 132 |
|
| 133 |
-
llm_result = using_ollama_model(retriever, query, results, conversation_history)
|
| 134 |
return llm_result
|
| 135 |
|
| 136 |
# The revised Gradio wrapper function
|
| 137 |
-
def gradio_rag_wrapper(message, history):
|
| 138 |
|
| 139 |
print(history)
|
| 140 |
# Check if a file has been uploaded
|
|
@@ -162,7 +173,7 @@ def gradio_rag_wrapper(message, history):
|
|
| 162 |
rag_history.append({"question": user_text, "answer": bot_msg})
|
| 163 |
|
| 164 |
docId = "42" # Use the docId from the uploaded file
|
| 165 |
-
response = retrievingReponse(docId, text_query, rag_history)
|
| 166 |
|
| 167 |
return response
|
| 168 |
|
|
|
|
| 68 |
gr.Info("PDF processed and ready for questions!")
|
| 69 |
|
| 70 |
# Your existing functions
|
| 71 |
+
def using_ollama_model(retriever, query, results, conversation_history, token):
|
| 72 |
+
try:
|
| 73 |
+
if token:
|
| 74 |
+
gr.Info("Attempting to log in to Hugging Face...")
|
| 75 |
+
login(token=token)
|
| 76 |
+
gr.Info("Login successful!")
|
| 77 |
+
else:
|
| 78 |
+
gr.Warning("No Hugging Face token provided. Gated models may not be accessible.")
|
| 79 |
+
except Exception as e:
|
| 80 |
+
gr.Error(f"Hugging Face login failed: {e}")
|
| 81 |
+
return "An error occurred during authentication. Please check your token and try again."
|
| 82 |
+
|
| 83 |
history_text = ""
|
| 84 |
for item in conversation_history:
|
| 85 |
if "question" in item and item["question"]:
|
|
|
|
| 122 |
|
| 123 |
return answer
|
| 124 |
|
| 125 |
+
def retrievingReponse(docId, query, conversation_history, token):
|
| 126 |
retriever = vectorDB.as_retriever(
|
| 127 |
search_type="similarity",
|
| 128 |
search_kwargs={
|
|
|
|
| 141 |
unique_results.append(ans)
|
| 142 |
seen_texts.add(result.page_content)
|
| 143 |
|
| 144 |
+
llm_result = using_ollama_model(retriever, query, results, conversation_history, token)
|
| 145 |
return llm_result
|
| 146 |
|
| 147 |
# The revised Gradio wrapper function
|
| 148 |
+
def gradio_rag_wrapper(message, history, token):
|
| 149 |
|
| 150 |
print(history)
|
| 151 |
# Check if a file has been uploaded
|
|
|
|
| 173 |
rag_history.append({"question": user_text, "answer": bot_msg})
|
| 174 |
|
| 175 |
docId = "42" # Use the docId from the uploaded file
|
| 176 |
+
response = retrievingReponse(docId, text_query, rag_history, token)
|
| 177 |
|
| 178 |
return response
|
| 179 |
|