Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 4 |
+
import json
|
| 5 |
+
from paddleocr import PaddleOCR
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Initialize PaddleOCR
|
| 10 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
| 11 |
+
|
| 12 |
+
# Function to draw bounding boxes on the image
|
| 13 |
+
def draw_boxes_on_image(image, data):
|
| 14 |
+
# Convert the image to RGB (OpenCV uses BGR by default)
|
| 15 |
+
image_rgb = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
|
| 16 |
+
|
| 17 |
+
# Load the image into PIL for easier drawing
|
| 18 |
+
pil_image = Image.fromarray(image_rgb)
|
| 19 |
+
draw = ImageDraw.Draw(pil_image)
|
| 20 |
+
|
| 21 |
+
# Define a font (using DejaVuSans since it's available by default)
|
| 22 |
+
try:
|
| 23 |
+
font = ImageFont.truetype("DejaVuSans.ttf", 20)
|
| 24 |
+
except IOError:
|
| 25 |
+
font = ImageFont.load_default()
|
| 26 |
+
|
| 27 |
+
for item in data:
|
| 28 |
+
bounding_box, (text, confidence) = item
|
| 29 |
+
|
| 30 |
+
# Convert bounding box to integer
|
| 31 |
+
box = np.array(bounding_box).astype(int)
|
| 32 |
+
|
| 33 |
+
# Draw the bounding box
|
| 34 |
+
draw.line([tuple(box[0]), tuple(box[1])], fill="green", width=2)
|
| 35 |
+
draw.line([tuple(box[1]), tuple(box[2])], fill="green", width=2)
|
| 36 |
+
draw.line([tuple(box[2]), tuple(box[3])], fill="green", width=2)
|
| 37 |
+
draw.line([tuple(box[3]), tuple(box[0])], fill="green", width=2)
|
| 38 |
+
|
| 39 |
+
# Draw the text above the bounding box
|
| 40 |
+
text_position = (box[0][0], box[0][1] - 20)
|
| 41 |
+
draw.text(text_position, f"{text} ({confidence:.2f})", fill="red", font=font)
|
| 42 |
+
|
| 43 |
+
return pil_image
|
| 44 |
+
|
| 45 |
+
# Function to save OCR results to JSON
|
| 46 |
+
def save_results_to_json(ocr_results):
|
| 47 |
+
results = []
|
| 48 |
+
|
| 49 |
+
for line in ocr_results:
|
| 50 |
+
for word_info in line:
|
| 51 |
+
bounding_box = word_info[0]
|
| 52 |
+
text, confidence = word_info[1]
|
| 53 |
+
results.append({
|
| 54 |
+
"bounding_box": [list(map(float, coord)) for coord in bounding_box],
|
| 55 |
+
"text": text,
|
| 56 |
+
"confidence": confidence
|
| 57 |
+
})
|
| 58 |
+
|
| 59 |
+
return results
|
| 60 |
+
|
| 61 |
+
# Function to identify 'field', 'value' pairs
|
| 62 |
+
def identify_field_value_pairs(ocr_results, fields):
|
| 63 |
+
field_value_pairs = {}
|
| 64 |
+
for line in ocr_results:
|
| 65 |
+
for word_info in line:
|
| 66 |
+
text, _ = word_info[1]
|
| 67 |
+
for field in fields:
|
| 68 |
+
if field.lower() in text.lower():
|
| 69 |
+
# Assuming the value comes immediately after the field
|
| 70 |
+
value_index = line.index(word_info) + 1
|
| 71 |
+
if value_index < len(line):
|
| 72 |
+
field_value_pairs[field] = line[value_index][1][0]
|
| 73 |
+
break
|
| 74 |
+
return field_value_pairs
|
| 75 |
+
|
| 76 |
+
# Function to process the image and generate outputs
|
| 77 |
+
def process_image(image):
|
| 78 |
+
ocr_results = ocr.ocr(np.array(image), cls=True)
|
| 79 |
+
processed_image = draw_boxes_on_image(image, ocr_results[0])
|
| 80 |
+
|
| 81 |
+
# Save OCR results to JSON
|
| 82 |
+
results_json = save_results_to_json(ocr_results[0])
|
| 83 |
+
json_path = "ocr_results.json"
|
| 84 |
+
with open(json_path, 'w') as json_file:
|
| 85 |
+
json.dump(results_json, json_file, indent=4)
|
| 86 |
+
|
| 87 |
+
# Identify field-value pairs
|
| 88 |
+
fields = ["Scheme Name", "Folio Number", "Number of Units", "PAN", "Signature", "Tax Status",
|
| 89 |
+
"Mobile Number", "Email", "Address", "Bank Account Details"]
|
| 90 |
+
field_value_pairs = identify_field_value_pairs(ocr_results[0], fields)
|
| 91 |
+
field_value_json_path = "field_value_pairs.json"
|
| 92 |
+
with open(field_value_json_path, 'w') as json_file:
|
| 93 |
+
json.dump(field_value_pairs, json_file, indent=4)
|
| 94 |
+
|
| 95 |
+
return processed_image, json_path, field_value_json_path
|
| 96 |
+
|
| 97 |
+
# Gradio Interface
|
| 98 |
+
interface = gr.Interface(
|
| 99 |
+
fn=process_image,
|
| 100 |
+
inputs="image",
|
| 101 |
+
outputs=[
|
| 102 |
+
"image",
|
| 103 |
+
gr.File(label="OCR Results JSON"),
|
| 104 |
+
gr.File(label="Field-Value Pairs JSON")
|
| 105 |
+
],
|
| 106 |
+
title="OCR Web Application",
|
| 107 |
+
description="Upload an image and get OCR results with bounding boxes and two JSON outputs."
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
if __name__ == "__main__":
|
| 111 |
+
interface.launch()
|