Spaces:
Running
Running
Update index.html
Browse files- index.html +2102 -19
index.html
CHANGED
|
@@ -1,19 +1,2102 @@
|
|
| 1 |
-
<!
|
| 2 |
-
<html>
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>🧠 AI Learning Lab</title>
|
| 7 |
+
<style>
|
| 8 |
+
* {
|
| 9 |
+
box-sizing: border-box;
|
| 10 |
+
margin: 0;
|
| 11 |
+
padding: 0;
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
body {
|
| 15 |
+
font-family: system-ui, -apple-system, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
|
| 16 |
+
background: linear-gradient(135deg, #111827 0%, #1f2937 50%, #111827 100%);
|
| 17 |
+
color: white;
|
| 18 |
+
min-height: 100vh;
|
| 19 |
+
padding: 1rem;
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
.container {
|
| 23 |
+
max-width: 1200px;
|
| 24 |
+
margin: 0 auto;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
/* Main Category Menu */
|
| 28 |
+
.main-menu {
|
| 29 |
+
min-height: 100vh;
|
| 30 |
+
display: flex;
|
| 31 |
+
flex-direction: column;
|
| 32 |
+
align-items: center;
|
| 33 |
+
justify-content: center;
|
| 34 |
+
text-align: center;
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
.main-header {
|
| 38 |
+
margin-bottom: 3rem;
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
.main-title {
|
| 42 |
+
font-size: 4rem;
|
| 43 |
+
font-weight: bold;
|
| 44 |
+
margin-bottom: 1rem;
|
| 45 |
+
background: linear-gradient(135deg, #06b6d4, #8b5cf6, #f59e0b);
|
| 46 |
+
-webkit-background-clip: text;
|
| 47 |
+
-webkit-text-fill-color: transparent;
|
| 48 |
+
background-clip: text;
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
.main-subtitle {
|
| 52 |
+
font-size: 1.5rem;
|
| 53 |
+
color: #d1d5db;
|
| 54 |
+
max-width: 800px;
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
.category-grid {
|
| 58 |
+
display: grid;
|
| 59 |
+
grid-template-columns: repeat(auto-fit, minmax(280px, 1fr));
|
| 60 |
+
gap: 2rem;
|
| 61 |
+
width: 100%;
|
| 62 |
+
max-width: 1000px;
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
.category-card {
|
| 66 |
+
background: #1f2937;
|
| 67 |
+
border: 3px solid #374151;
|
| 68 |
+
border-radius: 1.5rem;
|
| 69 |
+
padding: 2.5rem;
|
| 70 |
+
cursor: pointer;
|
| 71 |
+
transition: all 0.4s ease;
|
| 72 |
+
position: relative;
|
| 73 |
+
overflow: hidden;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
.category-card:hover {
|
| 77 |
+
transform: translateY(-8px);
|
| 78 |
+
box-shadow: 0 25px 50px rgba(6, 182, 212, 0.2);
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
.category-card.fundamentals { border-color: #06b6d4; }
|
| 82 |
+
.category-card.fundamentals:hover { box-shadow: 0 25px 50px rgba(6, 182, 212, 0.3); }
|
| 83 |
+
|
| 84 |
+
.category-card.extras { border-color: #8b5cf6; }
|
| 85 |
+
.category-card.extras:hover { box-shadow: 0 25px 50px rgba(139, 92, 246, 0.3); }
|
| 86 |
+
|
| 87 |
+
.category-card.baby { border-color: #f59e0b; }
|
| 88 |
+
.category-card.baby:hover { box-shadow: 0 25px 50px rgba(245, 158, 11, 0.3); }
|
| 89 |
+
|
| 90 |
+
.category-card.developer { border-color: #ef4444; }
|
| 91 |
+
.category-card.developer:hover { box-shadow: 0 25px 50px rgba(239, 68, 68, 0.3); }
|
| 92 |
+
|
| 93 |
+
.category-icon {
|
| 94 |
+
font-size: 4rem;
|
| 95 |
+
margin-bottom: 1.5rem;
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
.category-title {
|
| 99 |
+
font-size: 2rem;
|
| 100 |
+
font-weight: bold;
|
| 101 |
+
margin-bottom: 1rem;
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
.category-description {
|
| 105 |
+
color: #d1d5db;
|
| 106 |
+
line-height: 1.6;
|
| 107 |
+
margin-bottom: 1rem;
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
.category-count {
|
| 111 |
+
font-size: 0.875rem;
|
| 112 |
+
color: #9ca3af;
|
| 113 |
+
font-weight: 600;
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
/* Task Selection Menu */
|
| 117 |
+
.task-selection {
|
| 118 |
+
display: none;
|
| 119 |
+
min-height: 100vh;
|
| 120 |
+
padding: 2rem 0;
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
.task-header {
|
| 124 |
+
text-align: center;
|
| 125 |
+
margin-bottom: 3rem;
|
| 126 |
+
position: relative;
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
.task-back-btn {
|
| 130 |
+
position: absolute;
|
| 131 |
+
left: 0;
|
| 132 |
+
top: 50%;
|
| 133 |
+
transform: translateY(-50%);
|
| 134 |
+
background: #374151;
|
| 135 |
+
border: none;
|
| 136 |
+
color: white;
|
| 137 |
+
padding: 0.75rem 1.5rem;
|
| 138 |
+
border-radius: 0.5rem;
|
| 139 |
+
cursor: pointer;
|
| 140 |
+
transition: background 0.3s;
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
.task-back-btn:hover {
|
| 144 |
+
background: #4b5563;
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
.task-title {
|
| 148 |
+
font-size: 2.5rem;
|
| 149 |
+
font-weight: bold;
|
| 150 |
+
margin-bottom: 0.5rem;
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
.task-subtitle {
|
| 154 |
+
font-size: 1.125rem;
|
| 155 |
+
color: #d1d5db;
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
.task-grid {
|
| 159 |
+
display: grid;
|
| 160 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
| 161 |
+
gap: 1.5rem;
|
| 162 |
+
width: 100%;
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
.task-card {
|
| 166 |
+
background: #1f2937;
|
| 167 |
+
border: 2px solid #374151;
|
| 168 |
+
border-radius: 1rem;
|
| 169 |
+
padding: 2rem;
|
| 170 |
+
cursor: pointer;
|
| 171 |
+
transition: all 0.3s ease;
|
| 172 |
+
position: relative;
|
| 173 |
+
overflow: hidden;
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
.task-card:hover {
|
| 177 |
+
border-color: #06b6d4;
|
| 178 |
+
transform: translateY(-4px);
|
| 179 |
+
box-shadow: 0 20px 40px rgba(6, 182, 212, 0.15);
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
.task-icon {
|
| 183 |
+
font-size: 3rem;
|
| 184 |
+
margin-bottom: 1rem;
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
.task-name {
|
| 188 |
+
font-size: 1.5rem;
|
| 189 |
+
font-weight: bold;
|
| 190 |
+
margin-bottom: 0.5rem;
|
| 191 |
+
color: white;
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
.task-difficulty {
|
| 195 |
+
display: inline-block;
|
| 196 |
+
padding: 0.25rem 0.75rem;
|
| 197 |
+
border-radius: 1rem;
|
| 198 |
+
font-size: 0.75rem;
|
| 199 |
+
font-weight: 600;
|
| 200 |
+
margin-bottom: 1rem;
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
.difficulty-easy { background: #065f46; color: #10b981; }
|
| 204 |
+
.difficulty-medium { background: #92400e; color: #f59e0b; }
|
| 205 |
+
.difficulty-hard { background: #7c2d12; color: #ef4444; }
|
| 206 |
+
|
| 207 |
+
.task-description {
|
| 208 |
+
color: #d1d5db;
|
| 209 |
+
line-height: 1.6;
|
| 210 |
+
margin-bottom: 1rem;
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
.task-specs {
|
| 214 |
+
font-size: 0.875rem;
|
| 215 |
+
color: #9ca3af;
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
/* Developer Mode */
|
| 219 |
+
.developer-form {
|
| 220 |
+
background: #1f2937;
|
| 221 |
+
border: 2px solid #374151;
|
| 222 |
+
border-radius: 1rem;
|
| 223 |
+
padding: 2rem;
|
| 224 |
+
margin-bottom: 2rem;
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
.form-group {
|
| 228 |
+
margin-bottom: 1.5rem;
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
.form-label {
|
| 232 |
+
display: block;
|
| 233 |
+
margin-bottom: 0.5rem;
|
| 234 |
+
font-weight: 600;
|
| 235 |
+
color: white;
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
.form-input, .form-select, .form-textarea {
|
| 239 |
+
width: 100%;
|
| 240 |
+
padding: 0.75rem;
|
| 241 |
+
border: 1px solid #4b5563;
|
| 242 |
+
border-radius: 0.5rem;
|
| 243 |
+
background: #111827;
|
| 244 |
+
color: white;
|
| 245 |
+
font-size: 0.875rem;
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
.form-textarea {
|
| 249 |
+
min-height: 100px;
|
| 250 |
+
resize: vertical;
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
.param-counter {
|
| 254 |
+
color: #f59e0b;
|
| 255 |
+
font-size: 0.875rem;
|
| 256 |
+
margin-top: 0.25rem;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
.param-counter.over-limit {
|
| 260 |
+
color: #ef4444;
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
/* Training Interface */
|
| 264 |
+
.training-interface {
|
| 265 |
+
display: none;
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
.header {
|
| 269 |
+
text-align: center;
|
| 270 |
+
margin-bottom: 2rem;
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
.header-title {
|
| 274 |
+
display: flex;
|
| 275 |
+
align-items: center;
|
| 276 |
+
justify-content: center;
|
| 277 |
+
gap: 0.75rem;
|
| 278 |
+
margin-bottom: 1rem;
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
.back-btn {
|
| 282 |
+
position: absolute;
|
| 283 |
+
left: 0;
|
| 284 |
+
background: #374151;
|
| 285 |
+
border: none;
|
| 286 |
+
color: white;
|
| 287 |
+
padding: 0.5rem 1rem;
|
| 288 |
+
border-radius: 0.5rem;
|
| 289 |
+
cursor: pointer;
|
| 290 |
+
transition: background 0.3s;
|
| 291 |
+
}
|
| 292 |
+
|
| 293 |
+
.back-btn:hover {
|
| 294 |
+
background: #4b5563;
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
.brain-icon {
|
| 298 |
+
width: 2rem;
|
| 299 |
+
height: 2rem;
|
| 300 |
+
color: #06b6d4;
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
.title {
|
| 304 |
+
font-size: 1.875rem;
|
| 305 |
+
font-weight: bold;
|
| 306 |
+
color: white;
|
| 307 |
+
}
|
| 308 |
+
|
| 309 |
+
.subtitle {
|
| 310 |
+
color: #d1d5db;
|
| 311 |
+
max-width: 32rem;
|
| 312 |
+
margin: 0 auto;
|
| 313 |
+
}
|
| 314 |
+
|
| 315 |
+
.control-panel {
|
| 316 |
+
background: #1f2937;
|
| 317 |
+
border: 1px solid #374151;
|
| 318 |
+
border-radius: 0.5rem;
|
| 319 |
+
box-shadow: 0 25px 50px -12px rgba(0, 0, 0, 0.25);
|
| 320 |
+
padding: 1.5rem;
|
| 321 |
+
margin-bottom: 1.5rem;
|
| 322 |
+
text-align: center;
|
| 323 |
+
}
|
| 324 |
+
|
| 325 |
+
.controls {
|
| 326 |
+
display: flex;
|
| 327 |
+
flex-wrap: wrap;
|
| 328 |
+
align-items: center;
|
| 329 |
+
justify-content: center;
|
| 330 |
+
gap: 1rem;
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
.btn {
|
| 334 |
+
display: flex;
|
| 335 |
+
align-items: center;
|
| 336 |
+
gap: 0.5rem;
|
| 337 |
+
padding: 0.75rem 1.5rem;
|
| 338 |
+
border-radius: 0.5rem;
|
| 339 |
+
font-weight: 600;
|
| 340 |
+
border: none;
|
| 341 |
+
cursor: pointer;
|
| 342 |
+
transition: all 0.3s ease;
|
| 343 |
+
color: white;
|
| 344 |
+
}
|
| 345 |
+
|
| 346 |
+
.btn-start {
|
| 347 |
+
background: #059669;
|
| 348 |
+
box-shadow: 0 10px 15px -3px rgba(5, 150, 105, 0.25);
|
| 349 |
+
}
|
| 350 |
+
|
| 351 |
+
.btn-start:hover { background: #047857; }
|
| 352 |
+
|
| 353 |
+
.btn-pause {
|
| 354 |
+
background: #dc2626;
|
| 355 |
+
box-shadow: 0 10px 15px -3px rgba(220, 38, 38, 0.25);
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
.btn-pause:hover { background: #b91c1c; }
|
| 359 |
+
|
| 360 |
+
.btn-reset {
|
| 361 |
+
background: #4b5563;
|
| 362 |
+
box-shadow: 0 10px 15px -3px rgba(75, 85, 99, 0.25);
|
| 363 |
+
}
|
| 364 |
+
|
| 365 |
+
.btn-reset:hover { background: #374151; }
|
| 366 |
+
|
| 367 |
+
.stats-grid {
|
| 368 |
+
display: grid;
|
| 369 |
+
grid-template-columns: repeat(2, 1fr);
|
| 370 |
+
gap: 1rem;
|
| 371 |
+
margin-bottom: 1.5rem;
|
| 372 |
+
}
|
| 373 |
+
|
| 374 |
+
@media (min-width: 768px) {
|
| 375 |
+
.stats-grid {
|
| 376 |
+
grid-template-columns: repeat(4, 1fr);
|
| 377 |
+
}
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
.stat-card {
|
| 381 |
+
background: #1f2937;
|
| 382 |
+
border: 1px solid #374151;
|
| 383 |
+
border-radius: 0.5rem;
|
| 384 |
+
box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1);
|
| 385 |
+
padding: 1rem;
|
| 386 |
+
text-align: center;
|
| 387 |
+
}
|
| 388 |
+
|
| 389 |
+
.stat-value {
|
| 390 |
+
font-size: 1.5rem;
|
| 391 |
+
font-weight: bold;
|
| 392 |
+
margin-bottom: 0.25rem;
|
| 393 |
+
}
|
| 394 |
+
|
| 395 |
+
.stat-value.cyan { color: #06b6d4; }
|
| 396 |
+
.stat-value.purple { color: #a855f7; }
|
| 397 |
+
.stat-value.green { color: #10b981; }
|
| 398 |
+
.stat-value.orange { color: #f59e0b; }
|
| 399 |
+
|
| 400 |
+
.stat-label {
|
| 401 |
+
font-size: 0.875rem;
|
| 402 |
+
color: #9ca3af;
|
| 403 |
+
}
|
| 404 |
+
|
| 405 |
+
.main-grid {
|
| 406 |
+
display: grid;
|
| 407 |
+
gap: 1.5rem;
|
| 408 |
+
margin-bottom: 1.5rem;
|
| 409 |
+
}
|
| 410 |
+
|
| 411 |
+
@media (min-width: 768px) {
|
| 412 |
+
.main-grid {
|
| 413 |
+
grid-template-columns: repeat(2, 1fr);
|
| 414 |
+
}
|
| 415 |
+
}
|
| 416 |
+
|
| 417 |
+
.card {
|
| 418 |
+
background: #1f2937;
|
| 419 |
+
border: 1px solid #374151;
|
| 420 |
+
border-radius: 0.5rem;
|
| 421 |
+
box-shadow: 0 25px 50px -12px rgba(0, 0, 0, 0.25);
|
| 422 |
+
padding: 1.5rem;
|
| 423 |
+
}
|
| 424 |
+
|
| 425 |
+
.card-title {
|
| 426 |
+
font-size: 1.125rem;
|
| 427 |
+
font-weight: 600;
|
| 428 |
+
margin-bottom: 1rem;
|
| 429 |
+
color: white;
|
| 430 |
+
display: flex;
|
| 431 |
+
align-items: center;
|
| 432 |
+
gap: 0.5rem;
|
| 433 |
+
}
|
| 434 |
+
|
| 435 |
+
.network-canvas {
|
| 436 |
+
width: 100%;
|
| 437 |
+
height: auto;
|
| 438 |
+
border: 1px solid #4b5563;
|
| 439 |
+
border-radius: 0.5rem;
|
| 440 |
+
background: #111827;
|
| 441 |
+
}
|
| 442 |
+
|
| 443 |
+
.network-labels {
|
| 444 |
+
margin-top: 1rem;
|
| 445 |
+
font-size: 0.875rem;
|
| 446 |
+
color: #9ca3af;
|
| 447 |
+
display: flex;
|
| 448 |
+
justify-content: space-between;
|
| 449 |
+
}
|
| 450 |
+
|
| 451 |
+
.chart-container {
|
| 452 |
+
height: 16rem;
|
| 453 |
+
background: #111827;
|
| 454 |
+
border: 1px solid #4b5563;
|
| 455 |
+
border-radius: 0.5rem;
|
| 456 |
+
position: relative;
|
| 457 |
+
overflow: hidden;
|
| 458 |
+
}
|
| 459 |
+
|
| 460 |
+
.chart-info {
|
| 461 |
+
position: absolute;
|
| 462 |
+
bottom: 0.5rem;
|
| 463 |
+
left: 0.5rem;
|
| 464 |
+
font-size: 0.75rem;
|
| 465 |
+
color: #9ca3af;
|
| 466 |
+
background: #1f2937;
|
| 467 |
+
padding: 0.25rem 0.5rem;
|
| 468 |
+
border-radius: 0.25rem;
|
| 469 |
+
}
|
| 470 |
+
|
| 471 |
+
.task-grid-output {
|
| 472 |
+
display: grid;
|
| 473 |
+
grid-template-columns: repeat(2, 1fr);
|
| 474 |
+
gap: 1rem;
|
| 475 |
+
margin-top: 1.5rem;
|
| 476 |
+
}
|
| 477 |
+
|
| 478 |
+
@media (min-width: 768px) {
|
| 479 |
+
.task-grid-output {
|
| 480 |
+
grid-template-columns: repeat(4, 1fr);
|
| 481 |
+
}
|
| 482 |
+
}
|
| 483 |
+
|
| 484 |
+
.output-card {
|
| 485 |
+
padding: 1rem;
|
| 486 |
+
border-radius: 0.5rem;
|
| 487 |
+
border: 2px solid;
|
| 488 |
+
transition: all 0.3s ease;
|
| 489 |
+
text-align: center;
|
| 490 |
+
}
|
| 491 |
+
|
| 492 |
+
.output-card.current {
|
| 493 |
+
border-color: #06b6d4;
|
| 494 |
+
background: rgba(6, 182, 212, 0.1);
|
| 495 |
+
box-shadow: 0 10px 15px -3px rgba(6, 182, 212, 0.2);
|
| 496 |
+
}
|
| 497 |
+
|
| 498 |
+
.output-card.correct {
|
| 499 |
+
border-color: #10b981;
|
| 500 |
+
background: rgba(16, 185, 129, 0.1);
|
| 501 |
+
}
|
| 502 |
+
|
| 503 |
+
.output-card.wrong {
|
| 504 |
+
border-color: #ef4444;
|
| 505 |
+
background: rgba(239, 68, 68, 0.1);
|
| 506 |
+
}
|
| 507 |
+
|
| 508 |
+
.output-io {
|
| 509 |
+
font-size: 1.125rem;
|
| 510 |
+
font-family: monospace;
|
| 511 |
+
font-weight: bold;
|
| 512 |
+
color: white;
|
| 513 |
+
margin-bottom: 0.25rem;
|
| 514 |
+
}
|
| 515 |
+
|
| 516 |
+
.output-raw {
|
| 517 |
+
font-size: 0.875rem;
|
| 518 |
+
color: #9ca3af;
|
| 519 |
+
margin-bottom: 0.25rem;
|
| 520 |
+
}
|
| 521 |
+
|
| 522 |
+
.output-predicted {
|
| 523 |
+
font-size: 0.875rem;
|
| 524 |
+
font-weight: 600;
|
| 525 |
+
color: white;
|
| 526 |
+
margin-bottom: 0.25rem;
|
| 527 |
+
}
|
| 528 |
+
|
| 529 |
+
.output-status {
|
| 530 |
+
font-size: 0.75rem;
|
| 531 |
+
}
|
| 532 |
+
|
| 533 |
+
.output-status.correct { color: #10b981; }
|
| 534 |
+
.output-status.wrong { color: #ef4444; }
|
| 535 |
+
|
| 536 |
+
.info-section {
|
| 537 |
+
background: linear-gradient(135deg, #06b6d4 0%, #8b5cf6 100%);
|
| 538 |
+
border-radius: 0.5rem;
|
| 539 |
+
box-shadow: 0 25px 50px -12px rgba(0, 0, 0, 0.25);
|
| 540 |
+
padding: 1.5rem;
|
| 541 |
+
color: white;
|
| 542 |
+
}
|
| 543 |
+
|
| 544 |
+
.info-title {
|
| 545 |
+
font-size: 1.125rem;
|
| 546 |
+
font-weight: 600;
|
| 547 |
+
margin-bottom: 1rem;
|
| 548 |
+
}
|
| 549 |
+
|
| 550 |
+
.info-grid {
|
| 551 |
+
display: grid;
|
| 552 |
+
gap: 1rem;
|
| 553 |
+
font-size: 0.875rem;
|
| 554 |
+
}
|
| 555 |
+
|
| 556 |
+
@media (min-width: 768px) {
|
| 557 |
+
.info-grid {
|
| 558 |
+
grid-template-columns: repeat(3, 1fr);
|
| 559 |
+
}
|
| 560 |
+
}
|
| 561 |
+
|
| 562 |
+
.icon {
|
| 563 |
+
width: 1.25rem;
|
| 564 |
+
height: 1.25rem;
|
| 565 |
+
fill: currentColor;
|
| 566 |
+
}
|
| 567 |
+
|
| 568 |
+
.icon-stroke {
|
| 569 |
+
fill: none;
|
| 570 |
+
stroke: currentColor;
|
| 571 |
+
stroke-width: 2;
|
| 572 |
+
}
|
| 573 |
+
|
| 574 |
+
.data-viz {
|
| 575 |
+
width: 100%;
|
| 576 |
+
height: 300px;
|
| 577 |
+
border: 1px solid #4b5563;
|
| 578 |
+
border-radius: 0.5rem;
|
| 579 |
+
background: #111827;
|
| 580 |
+
margin-top: 1rem;
|
| 581 |
+
}
|
| 582 |
+
|
| 583 |
+
/* Baby Mode Styles */
|
| 584 |
+
.baby-viz {
|
| 585 |
+
background: linear-gradient(135deg, #fef3c7, #fde68a);
|
| 586 |
+
border-radius: 1rem;
|
| 587 |
+
padding: 2rem;
|
| 588 |
+
color: #92400e;
|
| 589 |
+
margin-top: 1rem;
|
| 590 |
+
text-align: center;
|
| 591 |
+
}
|
| 592 |
+
|
| 593 |
+
.baby-neuron {
|
| 594 |
+
display: inline-block;
|
| 595 |
+
width: 60px;
|
| 596 |
+
height: 60px;
|
| 597 |
+
border-radius: 50%;
|
| 598 |
+
margin: 0.5rem;
|
| 599 |
+
line-height: 60px;
|
| 600 |
+
font-weight: bold;
|
| 601 |
+
font-size: 1.2rem;
|
| 602 |
+
animation: bounce 2s infinite;
|
| 603 |
+
}
|
| 604 |
+
|
| 605 |
+
@keyframes bounce {
|
| 606 |
+
0%, 20%, 50%, 80%, 100% { transform: translateY(0); }
|
| 607 |
+
40% { transform: translateY(-10px); }
|
| 608 |
+
60% { transform: translateY(-5px); }
|
| 609 |
+
}
|
| 610 |
+
|
| 611 |
+
.baby-connection {
|
| 612 |
+
stroke: #f59e0b;
|
| 613 |
+
stroke-width: 3;
|
| 614 |
+
animation: pulse 1.5s infinite;
|
| 615 |
+
}
|
| 616 |
+
|
| 617 |
+
@keyframes pulse {
|
| 618 |
+
0% { opacity: 0.5; }
|
| 619 |
+
50% { opacity: 1; }
|
| 620 |
+
100% { opacity: 0.5; }
|
| 621 |
+
}
|
| 622 |
+
</style>
|
| 623 |
+
</head>
|
| 624 |
+
<body>
|
| 625 |
+
<div class="container">
|
| 626 |
+
<!-- Main Category Menu -->
|
| 627 |
+
<div id="mainMenu" class="main-menu">
|
| 628 |
+
<div class="main-header">
|
| 629 |
+
<h1 class="main-title">🧠 AI Learning Lab</h1>
|
| 630 |
+
<p class="main-subtitle">Explore different ways to learn about artificial intelligence - from basics to advanced!</p>
|
| 631 |
+
</div>
|
| 632 |
+
|
| 633 |
+
<div class="category-grid">
|
| 634 |
+
<div class="category-card fundamentals" onclick="showCategory('fundamentals')">
|
| 635 |
+
<div class="category-icon">🎯</div>
|
| 636 |
+
<h3 class="category-title">Fundamentals</h3>
|
| 637 |
+
<p class="category-description">Master the core concepts of neural networks with classic problems like logic gates and pattern recognition.</p>
|
| 638 |
+
<div class="category-count">6 Interactive Tasks</div>
|
| 639 |
+
</div>
|
| 640 |
+
|
| 641 |
+
<div class="category-card extras" onclick="showCategory('extras')">
|
| 642 |
+
<div class="category-icon">🚀</div>
|
| 643 |
+
<h3 class="category-title">Extras</h3>
|
| 644 |
+
<p class="category-description">Explore advanced techniques like autoencoders, GANs, and reinforcement learning in action.</p>
|
| 645 |
+
<div class="category-count">4 Advanced Techniques</div>
|
| 646 |
+
</div>
|
| 647 |
+
|
| 648 |
+
<div class="category-card baby" onclick="showCategory('baby')">
|
| 649 |
+
<div class="category-icon">🎈</div>
|
| 650 |
+
<h3 class="category-title">Baby Mode</h3>
|
| 651 |
+
<p class="category-description">Fun, colorful, and super simple explanations perfect for beginners of any age!</p>
|
| 652 |
+
<div class="category-count">5 Fun Activities</div>
|
| 653 |
+
</div>
|
| 654 |
+
|
| 655 |
+
<div class="category-card developer" onclick="showCategory('developer')">
|
| 656 |
+
<div class="category-icon">⚙️</div>
|
| 657 |
+
<h3 class="category-title">Developer</h3>
|
| 658 |
+
<p class="category-description">Create your own datasets and experiments. Full control over network architecture and training.</p>
|
| 659 |
+
<div class="category-count">Custom Everything</div>
|
| 660 |
+
</div>
|
| 661 |
+
</div>
|
| 662 |
+
</div>
|
| 663 |
+
|
| 664 |
+
<!-- Task Selection Menus -->
|
| 665 |
+
<div id="taskSelection" class="task-selection">
|
| 666 |
+
<div class="task-header">
|
| 667 |
+
<button class="task-back-btn" onclick="goBackToMain()">← Back to Categories</button>
|
| 668 |
+
<h2 id="categoryTitle" class="task-title">Fundamentals</h2>
|
| 669 |
+
<p id="categorySubtitle" class="task-subtitle">Master neural network basics</p>
|
| 670 |
+
</div>
|
| 671 |
+
<div id="taskGrid" class="task-grid">
|
| 672 |
+
<!-- Tasks will be populated by JavaScript -->
|
| 673 |
+
</div>
|
| 674 |
+
</div>
|
| 675 |
+
|
| 676 |
+
<!-- Developer Mode -->
|
| 677 |
+
<div id="developerMode" class="task-selection">
|
| 678 |
+
<div class="task-header">
|
| 679 |
+
<button class="task-back-btn" onclick="goBackToMain()">← Back to Categories</button>
|
| 680 |
+
<h2 class="task-title">Developer Mode</h2>
|
| 681 |
+
<p class="task-subtitle">Create custom AI experiments</p>
|
| 682 |
+
</div>
|
| 683 |
+
|
| 684 |
+
<div class="developer-form">
|
| 685 |
+
<div class="form-group">
|
| 686 |
+
<label class="form-label">Task Name</label>
|
| 687 |
+
<input type="text" id="devTaskName" class="form-input" placeholder="My Custom Task" value="Custom Task">
|
| 688 |
+
</div>
|
| 689 |
+
|
| 690 |
+
<div class="form-group">
|
| 691 |
+
<label class="form-label">Network Architecture (comma-separated)</label>
|
| 692 |
+
<input type="text" id="devArchitecture" class="form-input" placeholder="2,8,4,1" value="2,8,4,1">
|
| 693 |
+
<div id="paramCount" class="param-counter">Parameters: 0 / 5000</div>
|
| 694 |
+
</div>
|
| 695 |
+
|
| 696 |
+
<div class="form-group">
|
| 697 |
+
<label class="form-label">Learning Rate</label>
|
| 698 |
+
<input type="number" id="devLearningRate" class="form-input" step="0.01" min="0.01" max="1" value="0.2">
|
| 699 |
+
</div>
|
| 700 |
+
|
| 701 |
+
<div class="form-group">
|
| 702 |
+
<label class="form-label">Training Data (JSON format: [{"input": [x,y], "target": [z], "label": "text"}])</label>
|
| 703 |
+
<textarea id="devData" class="form-textarea" placeholder='[{"input": [0,0], "target": [0], "label": "0,0 → 0"}]'>[{"input": [0,0], "target": [0], "label": "0,0 → 0"},{"input": [0,1], "target": [1], "label": "0,1 → 1"},{"input": [1,0], "target": [1], "label": "1,0 → 1"},{"input": [1,1], "target": [0], "label": "1,1 → 0"}]</textarea>
|
| 704 |
+
</div>
|
| 705 |
+
|
| 706 |
+
<button id="createCustomTask" class="btn btn-start" onclick="createCustomTask()">
|
| 707 |
+
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
|
| 708 |
+
<path d="M12 5v14m-7-7h14"/>
|
| 709 |
+
</svg>
|
| 710 |
+
Create & Train
|
| 711 |
+
</button>
|
| 712 |
+
</div>
|
| 713 |
+
</div>
|
| 714 |
+
|
| 715 |
+
<!-- Training Interface -->
|
| 716 |
+
<div id="trainingInterface" class="training-interface">
|
| 717 |
+
<div class="header">
|
| 718 |
+
<div class="header-title" style="position: relative;">
|
| 719 |
+
<button id="backBtn" class="back-btn">← Back</button>
|
| 720 |
+
<svg class="brain-icon" fill="currentColor" viewBox="0 0 24 24">
|
| 721 |
+
<path d="M12 2C8.5 2 6 4.5 6 8c0 1.5.5 3 1.5 4C6.5 13 6 14.5 6 16c0 3.5 2.5 6 6 6s6-2.5 6-6c0-1.5-.5-3-1.5-4 1-1 1.5-2.5 1.5-4 0-3.5-2.5-6-6-6z"/>
|
| 722 |
+
</svg>
|
| 723 |
+
<h1 id="taskTitle" class="title">AI Task Trainer</h1>
|
| 724 |
+
</div>
|
| 725 |
+
<p id="taskSubtitle" class="subtitle">Watch the neural network learn in real-time</p>
|
| 726 |
+
</div>
|
| 727 |
+
|
| 728 |
+
<div class="control-panel">
|
| 729 |
+
<div class="controls">
|
| 730 |
+
<button id="trainBtn" class="btn btn-start">
|
| 731 |
+
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
|
| 732 |
+
<path d="M8 5v14l11-7z"/>
|
| 733 |
+
</svg>
|
| 734 |
+
Start Training
|
| 735 |
+
</button>
|
| 736 |
+
<button id="resetBtn" class="btn btn-reset">
|
| 737 |
+
<svg class="icon icon-stroke" viewBox="0 0 24 24">
|
| 738 |
+
<polyline points="1 4 1 10 7 10"></polyline>
|
| 739 |
+
<path d="M3.51 15a9 9 0 1 0 2.13-9.36L1 10"></path>
|
| 740 |
+
</svg>
|
| 741 |
+
Reset
|
| 742 |
+
</button>
|
| 743 |
+
</div>
|
| 744 |
+
</div>
|
| 745 |
+
|
| 746 |
+
<div class="stats-grid">
|
| 747 |
+
<div class="stat-card">
|
| 748 |
+
<div id="epochValue" class="stat-value cyan">0</div>
|
| 749 |
+
<div class="stat-label">Epochs</div>
|
| 750 |
+
</div>
|
| 751 |
+
<div class="stat-card">
|
| 752 |
+
<div id="lossValue" class="stat-value purple">1.000000</div>
|
| 753 |
+
<div class="stat-label">Avg Loss</div>
|
| 754 |
+
</div>
|
| 755 |
+
<div class="stat-card">
|
| 756 |
+
<div id="accuracyValue" class="stat-value green">0.0%</div>
|
| 757 |
+
<div class="stat-label">Accuracy</div>
|
| 758 |
+
</div>
|
| 759 |
+
<div class="stat-card">
|
| 760 |
+
<div id="currentValue" class="stat-value orange">-</div>
|
| 761 |
+
<div class="stat-label">Current</div>
|
| 762 |
+
</div>
|
| 763 |
+
</div>
|
| 764 |
+
|
| 765 |
+
<div class="main-grid">
|
| 766 |
+
<div class="card">
|
| 767 |
+
<h3 class="card-title">
|
| 768 |
+
<svg class="icon icon-stroke" viewBox="0 0 24 24">
|
| 769 |
+
<path d="M1 12s4-8 11-8 11 8 11 8-4 8-11 8-11-8-11-8z"></path>
|
| 770 |
+
<circle cx="12" cy="12" r="3"></circle>
|
| 771 |
+
</svg>
|
| 772 |
+
Network Architecture
|
| 773 |
+
</h3>
|
| 774 |
+
<canvas id="networkCanvas" class="network-canvas" width="400" height="300"></canvas>
|
| 775 |
+
<div id="networkLabels" class="network-labels">
|
| 776 |
+
<span>Input</span>
|
| 777 |
+
<span>Hidden</span>
|
| 778 |
+
<span>Output</span>
|
| 779 |
+
</div>
|
| 780 |
+
<div id="babyViz" class="baby-viz" style="display: none;">
|
| 781 |
+
<h4>🧠 AI Brain Thinking!</h4>
|
| 782 |
+
<div id="babyNeurons"></div>
|
| 783 |
+
<p>Watch the colorful neurons light up as the AI learns!</p>
|
| 784 |
+
</div>
|
| 785 |
+
</div>
|
| 786 |
+
|
| 787 |
+
<div class="card">
|
| 788 |
+
<h3 class="card-title">
|
| 789 |
+
<svg class="icon icon-stroke" viewBox="0 0 24 24">
|
| 790 |
+
<polyline points="23 18 13.5 8.5 8.5 13.5 1 6"></polyline>
|
| 791 |
+
<polyline points="17 18 23 18 23 12"></polyline>
|
| 792 |
+
</svg>
|
| 793 |
+
<span id="vizTitle">Training Progress</span>
|
| 794 |
+
</h3>
|
| 795 |
+
<div id="chartContainer" class="chart-container">
|
| 796 |
+
<svg id="lossChart" width="100%" height="100%" viewBox="0 0 100 100" preserveAspectRatio="none">
|
| 797 |
+
<defs>
|
| 798 |
+
<linearGradient id="lossGradient" x1="0%" y1="0%" x2="0%" y2="100%">
|
| 799 |
+
<stop offset="0%" stop-color="#06b6d4" stop-opacity="0.8"/>
|
| 800 |
+
<stop offset="100%" stop-color="#06b6d4" stop-opacity="0.2"/>
|
| 801 |
+
</linearGradient>
|
| 802 |
+
</defs>
|
| 803 |
+
<polyline id="lossLine" fill="none" stroke="#06b6d4" stroke-width="0.5" points=""/>
|
| 804 |
+
<polygon id="lossArea" fill="url(#lossGradient)" points=""/>
|
| 805 |
+
</svg>
|
| 806 |
+
<canvas id="dataViz" class="data-viz" style="display: none;"></canvas>
|
| 807 |
+
<div class="chart-info">
|
| 808 |
+
Loss: <span id="currentLoss">1.000000</span>
|
| 809 |
+
</div>
|
| 810 |
+
</div>
|
| 811 |
+
</div>
|
| 812 |
+
</div>
|
| 813 |
+
|
| 814 |
+
<div class="card">
|
| 815 |
+
<h3 class="card-title">
|
| 816 |
+
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
|
| 817 |
+
<polygon points="13 2 3 14 12 14 11 22 21 10 12 10 13 2"></polygon>
|
| 818 |
+
</svg>
|
| 819 |
+
<span id="outputTitle">Task Output</span>
|
| 820 |
+
</h3>
|
| 821 |
+
<div class="task-grid-output" id="taskOutput"></div>
|
| 822 |
+
</div>
|
| 823 |
+
|
| 824 |
+
<div class="info-section">
|
| 825 |
+
<h3 class="info-title">How it works</h3>
|
| 826 |
+
<div class="info-grid" id="infoContent"></div>
|
| 827 |
+
</div>
|
| 828 |
+
</div>
|
| 829 |
+
</div>
|
| 830 |
+
|
| 831 |
+
<script>
|
| 832 |
+
// Task categories
|
| 833 |
+
const CATEGORIES = {
|
| 834 |
+
fundamentals: {
|
| 835 |
+
title: 'Fundamentals',
|
| 836 |
+
subtitle: 'Master neural network basics with classic problems',
|
| 837 |
+
tasks: {
|
| 838 |
+
and: {
|
| 839 |
+
title: 'AND Gate Learning',
|
| 840 |
+
subtitle: 'Learning the AND logic gate - output 1 only when both inputs are 1',
|
| 841 |
+
architecture: [2, 4, 1],
|
| 842 |
+
learningRate: 0.3,
|
| 843 |
+
isRegression: false,
|
| 844 |
+
data: [
|
| 845 |
+
{ input: [0, 0], target: [0], label: "0,0 → 0" },
|
| 846 |
+
{ input: [0, 1], target: [0], label: "0,1 → 0" },
|
| 847 |
+
{ input: [1, 0], target: [0], label: "1,0 → 0" },
|
| 848 |
+
{ input: [1, 1], target: [1], label: "1,1 → 1" }
|
| 849 |
+
],
|
| 850 |
+
info: [
|
| 851 |
+
"The Problem: AND gate outputs 1 only when both inputs are 1. This is linearly separable and easier to learn.",
|
| 852 |
+
"The Network: Simple 2→4→1 architecture with ReLU activation. The simplicity matches the problem complexity.",
|
| 853 |
+
"The Training: Shows how even simple networks can learn basic logic. Notice the clear decision boundary."
|
| 854 |
+
]
|
| 855 |
+
},
|
| 856 |
+
or: {
|
| 857 |
+
title: 'OR Gate Learning',
|
| 858 |
+
subtitle: 'Learning the OR logic gate - output 1 when at least one input is 1',
|
| 859 |
+
architecture: [2, 4, 1],
|
| 860 |
+
learningRate: 0.3,
|
| 861 |
+
isRegression: false,
|
| 862 |
+
data: [
|
| 863 |
+
{ input: [0, 0], target: [0], label: "0,0 → 0" },
|
| 864 |
+
{ input: [0, 1], target: [1], label: "0,1 → 1" },
|
| 865 |
+
{ input: [1, 0], target: [1], label: "1,0 → 1" },
|
| 866 |
+
{ input: [1, 1], target: [1], label: "1,1 → 1" }
|
| 867 |
+
],
|
| 868 |
+
info: [
|
| 869 |
+
"The Problem: OR gate outputs 1 when at least one input is 1. Also linearly separable and learns quickly.",
|
| 870 |
+
"The Network: Same 2→4→1 architecture as AND gate. Different data, same network - shows versatility.",
|
| 871 |
+
"The Training: Demonstrates how network weights adapt to different logic patterns with identical architecture."
|
| 872 |
+
]
|
| 873 |
+
},
|
| 874 |
+
xor: {
|
| 875 |
+
title: 'XOR Gate Learning',
|
| 876 |
+
subtitle: 'Learning the XOR logic gate - the classic non-linear problem requiring hidden layers',
|
| 877 |
+
architecture: [2, 12, 8, 1],
|
| 878 |
+
learningRate: 0.3,
|
| 879 |
+
isRegression: false,
|
| 880 |
+
data: [
|
| 881 |
+
{ input: [0, 0], target: [0], label: "0,0 → 0" },
|
| 882 |
+
{ input: [0, 1], target: [1], label: "0,1 → 1" },
|
| 883 |
+
{ input: [1, 0], target: [1], label: "1,0 → 1" },
|
| 884 |
+
{ input: [1, 1], target: [0], label: "1,1 → 0" }
|
| 885 |
+
],
|
| 886 |
+
info: [
|
| 887 |
+
"The Problem: XOR outputs 1 when inputs differ. Not linearly separable - requires multiple layers to solve.",
|
| 888 |
+
"The Network: Deeper 2→12→8→1 architecture needed. Hidden layers create complex decision boundaries.",
|
| 889 |
+
"The Training: Shows why deep learning exists - some problems need multiple layers to represent solutions."
|
| 890 |
+
]
|
| 891 |
+
},
|
| 892 |
+
classification: {
|
| 893 |
+
title: '2D Classification',
|
| 894 |
+
subtitle: 'Learning to separate red and blue points in 2D space',
|
| 895 |
+
architecture: [2, 8, 6, 1],
|
| 896 |
+
learningRate: 0.2,
|
| 897 |
+
isRegression: false,
|
| 898 |
+
data: generateClassificationData(),
|
| 899 |
+
info: [
|
| 900 |
+
"The Problem: Classify points as red (0) or blue (1) based on their 2D coordinates. Real-world classification example.",
|
| 901 |
+
"The Network: 2→8→6→1 architecture learns non-linear decision boundaries to separate the classes.",
|
| 902 |
+
"The Training: Visualizes how networks create decision boundaries. Each neuron contributes to the final classification."
|
| 903 |
+
],
|
| 904 |
+
hasVisualization: true
|
| 905 |
+
},
|
| 906 |
+
sine: {
|
| 907 |
+
title: 'Sine Wave Approximation',
|
| 908 |
+
subtitle: 'Learning to approximate the sine function - regression with neural networks',
|
| 909 |
+
architecture: [1, 12, 8, 1],
|
| 910 |
+
learningRate: 0.1,
|
| 911 |
+
isRegression: true,
|
| 912 |
+
data: generateSineData(),
|
| 913 |
+
info: [
|
| 914 |
+
"The Problem: Learn to approximate sin(x) function. Shows how networks can learn continuous functions.",
|
| 915 |
+
"The Network: 1→12→8→1 architecture with single input/output. ReLU layers approximate smooth curves.",
|
| 916 |
+
"The Training: Demonstrates function approximation capabilities. Watch the network learn the wave pattern."
|
| 917 |
+
],
|
| 918 |
+
hasVisualization: true
|
| 919 |
+
},
|
| 920 |
+
spiral: {
|
| 921 |
+
title: 'Spiral Classification',
|
| 922 |
+
subtitle: 'Learning to classify points in a complex spiral pattern - a challenging non-linear problem',
|
| 923 |
+
architecture: [2, 16, 12, 8, 1],
|
| 924 |
+
learningRate: 0.15,
|
| 925 |
+
isRegression: false,
|
| 926 |
+
data: generateSpiralData(),
|
| 927 |
+
info: [
|
| 928 |
+
"The Problem: Classify points in two interleaved spirals. Very complex non-linear decision boundary needed.",
|
| 929 |
+
"The Network: Deep 2→16→12→8→1 architecture required for this challenging pattern recognition task.",
|
| 930 |
+
"The Training: Shows the limits of what neural networks can learn. Complex patterns need deeper networks."
|
| 931 |
+
],
|
| 932 |
+
hasVisualization: true
|
| 933 |
+
}
|
| 934 |
+
}
|
| 935 |
+
},
|
| 936 |
+
extras: {
|
| 937 |
+
title: 'Extra Techniques',
|
| 938 |
+
subtitle: 'Explore advanced AI methods and architectures',
|
| 939 |
+
tasks: {
|
| 940 |
+
autoencoder: {
|
| 941 |
+
title: 'Autoencoder',
|
| 942 |
+
subtitle: 'Learn to compress and reconstruct simple patterns - unsupervised learning in action',
|
| 943 |
+
architecture: [4, 2, 4],
|
| 944 |
+
learningRate: 0.3,
|
| 945 |
+
isRegression: true,
|
| 946 |
+
data: generateAutoencoderData(),
|
| 947 |
+
info: [
|
| 948 |
+
"The Problem: Compress 4D patterns into 2D and reconstruct them perfectly. Learn efficient data representations.",
|
| 949 |
+
"The Network: 4→2→4 hourglass forces compression. Middle layer captures essential features.",
|
| 950 |
+
"The Training: Watch the network learn to encode and decode simple binary patterns."
|
| 951 |
+
]
|
| 952 |
+
},
|
| 953 |
+
rnn: {
|
| 954 |
+
title: 'Simple RNN',
|
| 955 |
+
subtitle: 'Sequential pattern learning - predicting alternating patterns',
|
| 956 |
+
architecture: [1, 6, 1],
|
| 957 |
+
learningRate: 0.4,
|
| 958 |
+
isRegression: false,
|
| 959 |
+
data: generateSequenceData(),
|
| 960 |
+
info: [
|
| 961 |
+
"The Problem: Learn simple alternating pattern (0→1→0→1). Foundation of sequence modeling.",
|
| 962 |
+
"The Network: 1→6→1 learns temporal dependencies. Simplified version of recurrent networks.",
|
| 963 |
+
"The Training: Shows how networks can learn to predict what comes next in sequences."
|
| 964 |
+
]
|
| 965 |
+
},
|
| 966 |
+
gan_discriminator: {
|
| 967 |
+
title: 'GAN Discriminator',
|
| 968 |
+
subtitle: 'Learning to distinguish real vs fake data - half of a generative adversarial network',
|
| 969 |
+
architecture: [2, 6, 1],
|
| 970 |
+
learningRate: 0.3,
|
| 971 |
+
isRegression: false,
|
| 972 |
+
data: generateGANData(),
|
| 973 |
+
info: [
|
| 974 |
+
"The Problem: Distinguish between real data (top-right) and fake data (bottom-left). Core of GANs.",
|
| 975 |
+
"The Network: 2→6→1 discriminator learns clear spatial boundaries between data types.",
|
| 976 |
+
"The Training: In real GANs, this would compete with a generator in an adversarial game."
|
| 977 |
+
],
|
| 978 |
+
hasVisualization: true
|
| 979 |
+
},
|
| 980 |
+
transfer: {
|
| 981 |
+
title: 'Transfer Learning',
|
| 982 |
+
subtitle: 'Using pre-trained features for new tasks - efficient learning with prior knowledge',
|
| 983 |
+
architecture: [2, 8, 4, 1],
|
| 984 |
+
learningRate: 0.3,
|
| 985 |
+
isRegression: false,
|
| 986 |
+
data: generateTransferData(),
|
| 987 |
+
info: [
|
| 988 |
+
"The Problem: Solve a new task using features learned from a previous similar task.",
|
| 989 |
+
"The Network: 2→8→4→1 where first layers are pre-trained and frozen. Only final layer learns.",
|
| 990 |
+
"The Training: Demonstrates how prior knowledge accelerates learning on related problems."
|
| 991 |
+
]
|
| 992 |
+
}
|
| 993 |
+
}
|
| 994 |
+
},
|
| 995 |
+
baby: {
|
| 996 |
+
title: 'Baby Mode',
|
| 997 |
+
subtitle: 'Fun and simple AI learning for everyone!',
|
| 998 |
+
tasks: {
|
| 999 |
+
pet_classifier: {
|
| 1000 |
+
title: '🐱🐶 Pet Classifier',
|
| 1001 |
+
subtitle: 'Teach the AI to tell cats from dogs using simple features!',
|
| 1002 |
+
architecture: [2, 4, 1],
|
| 1003 |
+
learningRate: 0.3,
|
| 1004 |
+
isRegression: false,
|
| 1005 |
+
isBabyMode: true,
|
| 1006 |
+
data: [
|
| 1007 |
+
{ input: [0.1, 0.9], target: [0], label: "🐱 Small ears, long tail = Cat" },
|
| 1008 |
+
{ input: [0.2, 0.8], target: [0], label: "🐱 Small ears, long tail = Cat" },
|
| 1009 |
+
{ input: [0.8, 0.2], target: [1], label: "🐶 Big ears, short tail = Dog" },
|
| 1010 |
+
{ input: [0.9, 0.1], target: [1], label: "🐶 Big ears, short tail = Dog" }
|
| 1011 |
+
],
|
| 1012 |
+
info: [
|
| 1013 |
+
"The Problem: Help the AI learn the difference between cats and dogs by looking at ear size and tail length!",
|
| 1014 |
+
"The Network: Simple brain with just a few neurons that learn to recognize pet features.",
|
| 1015 |
+
"The Fun: Watch the colorful neurons get excited when they see the right patterns!"
|
| 1016 |
+
]
|
| 1017 |
+
},
|
| 1018 |
+
color_mixer: {
|
| 1019 |
+
title: '🎨 Color Mixer',
|
| 1020 |
+
subtitle: 'Teach the AI to mix colors and create beautiful combinations!',
|
| 1021 |
+
architecture: [2, 6, 3],
|
| 1022 |
+
learningRate: 0.2,
|
| 1023 |
+
isRegression: true,
|
| 1024 |
+
isBabyMode: true,
|
| 1025 |
+
data: [
|
| 1026 |
+
{ input: [1, 0], target: [1, 0, 0], label: "🔴 Red input = Red output" },
|
| 1027 |
+
{ input: [0, 1], target: [0, 0, 1], label: "🔵 Blue input = Blue output" },
|
| 1028 |
+
{ input: [1, 1], target: [0.5, 0, 0.5], label: "🟣 Red + Blue = Purple" },
|
| 1029 |
+
{ input: [0.5, 0.5], target: [0.25, 0, 0.75], label: "🟣 Mix = Light Purple" }
|
| 1030 |
+
],
|
| 1031 |
+
info: [
|
| 1032 |
+
"The Problem: Teach the AI how to mix colors like a real artist!",
|
| 1033 |
+
"The Network: A creative brain that learns color combinations and mixing rules.",
|
| 1034 |
+
"The Magic: Watch as the AI learns to create new colors by combining others!"
|
| 1035 |
+
]
|
| 1036 |
+
},
|
| 1037 |
+
number_guesser: {
|
| 1038 |
+
title: '🔢 Number Guesser',
|
| 1039 |
+
subtitle: 'The AI learns to guess if numbers are big or small!',
|
| 1040 |
+
architecture: [1, 4, 1],
|
| 1041 |
+
learningRate: 0.4,
|
| 1042 |
+
isRegression: false,
|
| 1043 |
+
isBabyMode: true,
|
| 1044 |
+
data: [
|
| 1045 |
+
{ input: [0.1], target: [0], label: "0.1 = Small number 📉" },
|
| 1046 |
+
{ input: [0.2], target: [0], label: "0.2 = Small number 📉" },
|
| 1047 |
+
{ input: [0.8], target: [1], label: "0.8 = Big number 📈" },
|
| 1048 |
+
{ input: [0.9], target: [1], label: "0.9 = Big number 📈" }
|
| 1049 |
+
],
|
| 1050 |
+
info: [
|
| 1051 |
+
"The Problem: Help the AI learn which numbers are big and which are small!",
|
| 1052 |
+
"The Network: A simple counting brain that learns about number sizes.",
|
| 1053 |
+
"The Learning: Watch the AI get better at recognizing big and small numbers!"
|
| 1054 |
+
]
|
| 1055 |
+
},
|
| 1056 |
+
weather_predictor: {
|
| 1057 |
+
title: '🌦️ Weather Predictor',
|
| 1058 |
+
subtitle: 'Teach the AI to predict sunny or rainy weather!',
|
| 1059 |
+
architecture: [2, 6, 1],
|
| 1060 |
+
learningRate: 0.25,
|
| 1061 |
+
isRegression: false,
|
| 1062 |
+
isBabyMode: true,
|
| 1063 |
+
data: [
|
| 1064 |
+
{ input: [0.9, 0.1], target: [1], label: "☀️ Hot + Dry = Sunny" },
|
| 1065 |
+
{ input: [0.8, 0.2], target: [1], label: "☀️ Warm + Dry = Sunny" },
|
| 1066 |
+
{ input: [0.2, 0.9], target: [0], label: "🌧️ Cool + Humid = Rainy" },
|
| 1067 |
+
{ input: [0.1, 0.8], target: [0], label: "🌧️ Cold + Humid = Rainy" }
|
| 1068 |
+
],
|
| 1069 |
+
info: [
|
| 1070 |
+
"The Problem: Help the AI become a weather forecaster by learning temperature and humidity patterns!",
|
| 1071 |
+
"The Network: A weather brain that learns to predict rain or shine!",
|
| 1072 |
+
"The Prediction: Watch as the AI learns to be a smart weather assistant!"
|
| 1073 |
+
]
|
| 1074 |
+
},
|
| 1075 |
+
emoji_matcher: {
|
| 1076 |
+
title: '😊 Emoji Matcher',
|
| 1077 |
+
subtitle: 'The AI learns to match happy and sad feelings!',
|
| 1078 |
+
architecture: [2, 5, 1],
|
| 1079 |
+
learningRate: 0.3,
|
| 1080 |
+
isRegression: false,
|
| 1081 |
+
isBabyMode: true,
|
| 1082 |
+
data: [
|
| 1083 |
+
{ input: [0.9, 0.9], target: [1], label: "😊 High energy + Good mood = Happy" },
|
| 1084 |
+
{ input: [0.8, 0.8], target: [1], label: "😊 Good energy + Good mood = Happy" },
|
| 1085 |
+
{ input: [0.2, 0.2], target: [0], label: "😢 Low energy + Bad mood = Sad" },
|
| 1086 |
+
{ input: [0.1, 0.3], target: [0], label: "😢 No energy + Bad mood = Sad" }
|
| 1087 |
+
],
|
| 1088 |
+
info: [
|
| 1089 |
+
"The Problem: Teach the AI to understand emotions by looking at energy and mood levels!",
|
| 1090 |
+
"The Network: An emotional brain that learns about feelings and happiness!",
|
| 1091 |
+
"The Feelings: Watch the AI learn to recognize when someone is happy or sad!"
|
| 1092 |
+
]
|
| 1093 |
+
}
|
| 1094 |
+
}
|
| 1095 |
+
}
|
| 1096 |
+
};
|
| 1097 |
+
|
| 1098 |
+
// Data generation functions
|
| 1099 |
+
function generateClassificationData() {
|
| 1100 |
+
const data = [];
|
| 1101 |
+
for (let i = 0; i < 8; i++) {
|
| 1102 |
+
data.push({
|
| 1103 |
+
input: [Math.random() * 0.4 + 0.1, Math.random() * 0.4 + 0.5],
|
| 1104 |
+
target: [0],
|
| 1105 |
+
label: "Red cluster"
|
| 1106 |
+
});
|
| 1107 |
+
data.push({
|
| 1108 |
+
input: [Math.random() * 0.4 + 0.5, Math.random() * 0.4 + 0.1],
|
| 1109 |
+
target: [1],
|
| 1110 |
+
label: "Blue cluster"
|
| 1111 |
+
});
|
| 1112 |
+
}
|
| 1113 |
+
return data;
|
| 1114 |
+
}
|
| 1115 |
+
|
| 1116 |
+
function generateSineData() {
|
| 1117 |
+
const data = [];
|
| 1118 |
+
for (let i = 0; i < 20; i++) {
|
| 1119 |
+
const x = (i / 19) * 2 * Math.PI;
|
| 1120 |
+
data.push({
|
| 1121 |
+
input: [x / (2 * Math.PI)],
|
| 1122 |
+
target: [(Math.sin(x) + 1) / 2],
|
| 1123 |
+
label: `${(x/(2*Math.PI)).toFixed(2)} → ${((Math.sin(x)+1)/2).toFixed(2)}`
|
| 1124 |
+
});
|
| 1125 |
+
}
|
| 1126 |
+
return data;
|
| 1127 |
+
}
|
| 1128 |
+
|
| 1129 |
+
function generateSpiralData() {
|
| 1130 |
+
const data = [];
|
| 1131 |
+
const n = 50;
|
| 1132 |
+
for (let i = 0; i < n; i++) {
|
| 1133 |
+
const r = i / n * 3;
|
| 1134 |
+
const t = 1.75 * i / n * 2 * Math.PI;
|
| 1135 |
+
|
| 1136 |
+
data.push({
|
| 1137 |
+
input: [
|
| 1138 |
+
(r * Math.cos(t) + 1) / 2,
|
| 1139 |
+
(r * Math.sin(t) + 1) / 2
|
| 1140 |
+
],
|
| 1141 |
+
target: [0],
|
| 1142 |
+
label: "Spiral 1"
|
| 1143 |
+
});
|
| 1144 |
+
|
| 1145 |
+
data.push({
|
| 1146 |
+
input: [
|
| 1147 |
+
(r * Math.cos(t + Math.PI) + 1) / 2,
|
| 1148 |
+
(r * Math.sin(t + Math.PI) + 1) / 2
|
| 1149 |
+
],
|
| 1150 |
+
target: [1],
|
| 1151 |
+
label: "Spiral 2"
|
| 1152 |
+
});
|
| 1153 |
+
}
|
| 1154 |
+
return data;
|
| 1155 |
+
}
|
| 1156 |
+
|
| 1157 |
+
function generateAutoencoderData() {
|
| 1158 |
+
const data = [];
|
| 1159 |
+
// Create simple, learnable patterns instead of random data
|
| 1160 |
+
const patterns = [
|
| 1161 |
+
[1, 0, 0, 0], // One-hot patterns are easier to reconstruct
|
| 1162 |
+
[0, 1, 0, 0],
|
| 1163 |
+
[0, 0, 1, 0],
|
| 1164 |
+
[0, 0, 0, 1],
|
| 1165 |
+
[1, 1, 0, 0], // Simple combinations
|
| 1166 |
+
[0, 0, 1, 1],
|
| 1167 |
+
[1, 0, 1, 0],
|
| 1168 |
+
[0, 1, 0, 1]
|
| 1169 |
+
];
|
| 1170 |
+
|
| 1171 |
+
patterns.forEach((pattern, i) => {
|
| 1172 |
+
data.push({
|
| 1173 |
+
input: pattern,
|
| 1174 |
+
target: pattern, // Autoencoder reconstructs input
|
| 1175 |
+
label: `Pattern ${i+1}`
|
| 1176 |
+
});
|
| 1177 |
+
});
|
| 1178 |
+
|
| 1179 |
+
return data;
|
| 1180 |
+
}
|
| 1181 |
+
|
| 1182 |
+
function generateSequenceData() {
|
| 1183 |
+
const data = [];
|
| 1184 |
+
// Much simpler pattern: just alternating 0 and 1
|
| 1185 |
+
const sequence = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1];
|
| 1186 |
+
|
| 1187 |
+
for (let i = 0; i < sequence.length - 1; i++) {
|
| 1188 |
+
data.push({
|
| 1189 |
+
input: [sequence[i]],
|
| 1190 |
+
target: [sequence[i + 1]], // Predict next in sequence
|
| 1191 |
+
label: `${sequence[i]} → ${sequence[i + 1]}`
|
| 1192 |
+
});
|
| 1193 |
+
}
|
| 1194 |
+
return data;
|
| 1195 |
+
}
|
| 1196 |
+
|
| 1197 |
+
function generateGANData() {
|
| 1198 |
+
const data = [];
|
| 1199 |
+
// Real data: clear pattern - points in top-right quadrant
|
| 1200 |
+
for (let i = 0; i < 8; i++) {
|
| 1201 |
+
data.push({
|
| 1202 |
+
input: [
|
| 1203 |
+
0.7 + Math.random() * 0.3, // 0.7-1.0 range
|
| 1204 |
+
0.7 + Math.random() * 0.3 // 0.7-1.0 range
|
| 1205 |
+
],
|
| 1206 |
+
target: [1], // Real
|
| 1207 |
+
label: "Real: top-right"
|
| 1208 |
+
});
|
| 1209 |
+
}
|
| 1210 |
+
// Fake data: clearly different - points in bottom-left quadrant
|
| 1211 |
+
for (let i = 0; i < 8; i++) {
|
| 1212 |
+
data.push({
|
| 1213 |
+
input: [
|
| 1214 |
+
Math.random() * 0.3, // 0.0-0.3 range
|
| 1215 |
+
Math.random() * 0.3 // 0.0-0.3 range
|
| 1216 |
+
],
|
| 1217 |
+
target: [0], // Fake
|
| 1218 |
+
label: "Fake: bottom-left"
|
| 1219 |
+
});
|
| 1220 |
+
}
|
| 1221 |
+
return data;
|
| 1222 |
+
}
|
| 1223 |
+
|
| 1224 |
+
function generateTransferData() {
|
| 1225 |
+
const data = [];
|
| 1226 |
+
// Similar to XOR but slightly different
|
| 1227 |
+
data.push(
|
| 1228 |
+
{ input: [0, 0], target: [1], label: "0,0 → 1 (NOT XOR)" },
|
| 1229 |
+
{ input: [0, 1], target: [0], label: "0,1 → 0 (NOT XOR)" },
|
| 1230 |
+
{ input: [1, 0], target: [0], label: "1,0 → 0 (NOT XOR)" },
|
| 1231 |
+
{ input: [1, 1], target: [1], label: "1,1 → 1 (NOT XOR)" }
|
| 1232 |
+
);
|
| 1233 |
+
return data;
|
| 1234 |
+
}
|
| 1235 |
+
|
| 1236 |
+
// Neural Network class
|
| 1237 |
+
class NeuralNetwork {
|
| 1238 |
+
constructor(layers, learningRate = 0.3) {
|
| 1239 |
+
this.layers = layers;
|
| 1240 |
+
this.weights = [];
|
| 1241 |
+
this.biases = [];
|
| 1242 |
+
this.activations = [];
|
| 1243 |
+
this.zValues = [];
|
| 1244 |
+
this.learningRate = learningRate;
|
| 1245 |
+
this.momentum = 0.8;
|
| 1246 |
+
this.prevWeightUpdates = [];
|
| 1247 |
+
this.prevBiasUpdates = [];
|
| 1248 |
+
|
| 1249 |
+
this.initializeWeights();
|
| 1250 |
+
}
|
| 1251 |
+
|
| 1252 |
+
initializeWeights() {
|
| 1253 |
+
for (let i = 0; i < this.layers.length - 1; i++) {
|
| 1254 |
+
const fanIn = this.layers[i];
|
| 1255 |
+
const fanOut = this.layers[i + 1];
|
| 1256 |
+
const limit = Math.sqrt(2 / fanIn) * 1.5;
|
| 1257 |
+
|
| 1258 |
+
this.weights[i] = Array(fanOut).fill().map(() =>
|
| 1259 |
+
Array(fanIn).fill().map(() => (Math.random() * 2 - 1) * limit)
|
| 1260 |
+
);
|
| 1261 |
+
|
| 1262 |
+
this.biases[i] = Array(fanOut).fill().map(() => (Math.random() * 2 - 1) * 0.3);
|
| 1263 |
+
|
| 1264 |
+
this.prevWeightUpdates[i] = Array(fanOut).fill().map(() => Array(fanIn).fill(0));
|
| 1265 |
+
this.prevBiasUpdates[i] = Array(fanOut).fill(0);
|
| 1266 |
+
}
|
| 1267 |
+
}
|
| 1268 |
+
|
| 1269 |
+
getParameterCount() {
|
| 1270 |
+
let count = 0;
|
| 1271 |
+
for (let i = 0; i < this.layers.length - 1; i++) {
|
| 1272 |
+
count += this.layers[i] * this.layers[i + 1]; // weights
|
| 1273 |
+
count += this.layers[i + 1]; // biases
|
| 1274 |
+
}
|
| 1275 |
+
return count;
|
| 1276 |
+
}
|
| 1277 |
+
|
| 1278 |
+
relu(x) {
|
| 1279 |
+
return Math.max(0, x);
|
| 1280 |
+
}
|
| 1281 |
+
|
| 1282 |
+
reluDerivative(x) {
|
| 1283 |
+
return x > 0 ? 1 : 0;
|
| 1284 |
+
}
|
| 1285 |
+
|
| 1286 |
+
sigmoid(x) {
|
| 1287 |
+
return x > 20 ? 1 : x < -20 ? 0 : 1 / (1 + Math.exp(-x));
|
| 1288 |
+
}
|
| 1289 |
+
|
| 1290 |
+
sigmoidDerivative(x) {
|
| 1291 |
+
return x * (1 - x);
|
| 1292 |
+
}
|
| 1293 |
+
|
| 1294 |
+
activate(x, layer) {
|
| 1295 |
+
return layer === this.layers.length - 1 ? this.sigmoid(x) : this.relu(x);
|
| 1296 |
+
}
|
| 1297 |
+
|
| 1298 |
+
activateDerivative(x, layer) {
|
| 1299 |
+
return layer === this.layers.length - 1 ? this.sigmoidDerivative(x) : this.reluDerivative(x);
|
| 1300 |
+
}
|
| 1301 |
+
|
| 1302 |
+
forward(input) {
|
| 1303 |
+
this.activations = [input];
|
| 1304 |
+
this.zValues = [];
|
| 1305 |
+
|
| 1306 |
+
for (let i = 0; i < this.weights.length; i++) {
|
| 1307 |
+
const layer = [];
|
| 1308 |
+
const zLayer = [];
|
| 1309 |
+
for (let j = 0; j < this.weights[i].length; j++) {
|
| 1310 |
+
let sum = this.biases[i][j];
|
| 1311 |
+
for (let k = 0; k < this.weights[i][j].length; k++) {
|
| 1312 |
+
sum += this.weights[i][j][k] * this.activations[i][k];
|
| 1313 |
+
}
|
| 1314 |
+
zLayer.push(sum);
|
| 1315 |
+
layer.push(this.activate(sum, i + 1));
|
| 1316 |
+
}
|
| 1317 |
+
this.zValues.push(zLayer);
|
| 1318 |
+
this.activations.push(layer);
|
| 1319 |
+
}
|
| 1320 |
+
|
| 1321 |
+
return this.activations[this.activations.length - 1];
|
| 1322 |
+
}
|
| 1323 |
+
|
| 1324 |
+
trainBatch(data) {
|
| 1325 |
+
let totalLoss = 0;
|
| 1326 |
+
|
| 1327 |
+
const accWeightGrads = this.weights.map(layer =>
|
| 1328 |
+
layer.map(neuron => neuron.map(() => 0))
|
| 1329 |
+
);
|
| 1330 |
+
const accBiasGrads = this.biases.map(layer => layer.map(() => 0));
|
| 1331 |
+
|
| 1332 |
+
for (const sample of data) {
|
| 1333 |
+
const output = this.forward(sample.input);
|
| 1334 |
+
const loss = sample.target.reduce((sum, t, i) =>
|
| 1335 |
+
sum + Math.pow(t - output[i], 2), 0) / sample.target.length;
|
| 1336 |
+
totalLoss += loss;
|
| 1337 |
+
|
| 1338 |
+
const errors = [];
|
| 1339 |
+
const outputLayer = this.activations[this.activations.length - 1];
|
| 1340 |
+
|
| 1341 |
+
errors[this.weights.length - 1] = outputLayer.map((o, i) =>
|
| 1342 |
+
(sample.target[i] - o) * this.sigmoidDerivative(o)
|
| 1343 |
+
);
|
| 1344 |
+
|
| 1345 |
+
for (let i = this.weights.length - 2; i >= 0; i--) {
|
| 1346 |
+
errors[i] = [];
|
| 1347 |
+
for (let j = 0; j < this.layers[i + 1]; j++) {
|
| 1348 |
+
let error = 0;
|
| 1349 |
+
for (let k = 0; k < this.layers[i + 2]; k++) {
|
| 1350 |
+
error += errors[i + 1][k] * this.weights[i + 1][k][j];
|
| 1351 |
+
}
|
| 1352 |
+
const derivative = this.activateDerivative(this.zValues[i][j], i + 1);
|
| 1353 |
+
errors[i][j] = error * derivative;
|
| 1354 |
+
}
|
| 1355 |
+
}
|
| 1356 |
+
|
| 1357 |
+
for (let i = 0; i < this.weights.length; i++) {
|
| 1358 |
+
for (let j = 0; j < this.weights[i].length; j++) {
|
| 1359 |
+
for (let k = 0; k < this.weights[i][j].length; k++) {
|
| 1360 |
+
accWeightGrads[i][j][k] += errors[i][j] * this.activations[i][k];
|
| 1361 |
+
}
|
| 1362 |
+
accBiasGrads[i][j] += errors[i][j];
|
| 1363 |
+
}
|
| 1364 |
+
}
|
| 1365 |
+
}
|
| 1366 |
+
|
| 1367 |
+
const weightChanges = [];
|
| 1368 |
+
for (let i = 0; i < this.weights.length; i++) {
|
| 1369 |
+
weightChanges[i] = [];
|
| 1370 |
+
for (let j = 0; j < this.weights[i].length; j++) {
|
| 1371 |
+
weightChanges[i][j] = [];
|
| 1372 |
+
for (let k = 0; k < this.weights[i][j].length; k++) {
|
| 1373 |
+
const avgGradient = accWeightGrads[i][j][k] / data.length;
|
| 1374 |
+
const update = this.learningRate * avgGradient + this.momentum * this.prevWeightUpdates[i][j][k];
|
| 1375 |
+
|
| 1376 |
+
this.weights[i][j][k] += update;
|
| 1377 |
+
this.prevWeightUpdates[i][j][k] = update;
|
| 1378 |
+
weightChanges[i][j][k] = Math.abs(avgGradient);
|
| 1379 |
+
}
|
| 1380 |
+
|
| 1381 |
+
const avgBiasGradient = accBiasGrads[i][j] / data.length;
|
| 1382 |
+
const biasUpdate = this.learningRate * avgBiasGradient + this.momentum * this.prevBiasUpdates[i][j];
|
| 1383 |
+
this.biases[i][j] += biasUpdate;
|
| 1384 |
+
this.prevBiasUpdates[i][j] = biasUpdate;
|
| 1385 |
+
}
|
| 1386 |
+
}
|
| 1387 |
+
|
| 1388 |
+
const avgLoss = totalLoss / data.length;
|
| 1389 |
+
return { loss: avgLoss, weightChanges };
|
| 1390 |
+
}
|
| 1391 |
+
}
|
| 1392 |
+
|
| 1393 |
+
// Global state
|
| 1394 |
+
let currentCategory = null;
|
| 1395 |
+
let currentTask = null;
|
| 1396 |
+
let network = null;
|
| 1397 |
+
let isTraining = false;
|
| 1398 |
+
let epoch = 0;
|
| 1399 |
+
let currentLoss = 1.0;
|
| 1400 |
+
let lossHistory = [];
|
| 1401 |
+
let currentSample = 0;
|
| 1402 |
+
let activations = [];
|
| 1403 |
+
let predictions = [];
|
| 1404 |
+
let weightChanges = [];
|
| 1405 |
+
let avgLoss = 1.0;
|
| 1406 |
+
let accuracy = 0;
|
| 1407 |
+
let animationTime = 0;
|
| 1408 |
+
let trainInterval = null;
|
| 1409 |
+
let animationId = null;
|
| 1410 |
+
|
| 1411 |
+
// DOM elements
|
| 1412 |
+
const mainMenu = document.getElementById('mainMenu');
|
| 1413 |
+
const taskSelection = document.getElementById('taskSelection');
|
| 1414 |
+
const developerMode = document.getElementById('developerMode');
|
| 1415 |
+
const trainingInterface = document.getElementById('trainingInterface');
|
| 1416 |
+
const categoryTitle = document.getElementById('categoryTitle');
|
| 1417 |
+
const categorySubtitle = document.getElementById('categorySubtitle');
|
| 1418 |
+
const taskGrid = document.getElementById('taskGrid');
|
| 1419 |
+
const backBtn = document.getElementById('backBtn');
|
| 1420 |
+
const taskTitle = document.getElementById('taskTitle');
|
| 1421 |
+
const taskSubtitle = document.getElementById('taskSubtitle');
|
| 1422 |
+
const trainBtn = document.getElementById('trainBtn');
|
| 1423 |
+
const resetBtn = document.getElementById('resetBtn');
|
| 1424 |
+
const epochValue = document.getElementById('epochValue');
|
| 1425 |
+
const lossValue = document.getElementById('lossValue');
|
| 1426 |
+
const accuracyValue = document.getElementById('accuracyValue');
|
| 1427 |
+
const currentValue = document.getElementById('currentValue');
|
| 1428 |
+
const networkCanvas = document.getElementById('networkCanvas');
|
| 1429 |
+
const networkLabels = document.getElementById('networkLabels');
|
| 1430 |
+
const lossChart = document.getElementById('lossChart');
|
| 1431 |
+
const lossLine = document.getElementById('lossLine');
|
| 1432 |
+
const lossArea = document.getElementById('lossArea');
|
| 1433 |
+
const currentLossSpan = document.getElementById('currentLoss');
|
| 1434 |
+
const taskOutput = document.getElementById('taskOutput');
|
| 1435 |
+
const outputTitle = document.getElementById('outputTitle');
|
| 1436 |
+
const infoContent = document.getElementById('infoContent');
|
| 1437 |
+
const dataViz = document.getElementById('dataViz');
|
| 1438 |
+
const chartContainer = document.getElementById('chartContainer');
|
| 1439 |
+
const vizTitle = document.getElementById('vizTitle');
|
| 1440 |
+
const babyViz = document.getElementById('babyViz');
|
| 1441 |
+
|
| 1442 |
+
// Developer mode elements
|
| 1443 |
+
const devTaskName = document.getElementById('devTaskName');
|
| 1444 |
+
const devArchitecture = document.getElementById('devArchitecture');
|
| 1445 |
+
const devLearningRate = document.getElementById('devLearningRate');
|
| 1446 |
+
const devData = document.getElementById('devData');
|
| 1447 |
+
const paramCount = document.getElementById('paramCount');
|
| 1448 |
+
|
| 1449 |
+
// Category navigation
|
| 1450 |
+
function showCategory(categoryId) {
|
| 1451 |
+
window.scrollTo(0, 0);
|
| 1452 |
+
currentCategory = categoryId;
|
| 1453 |
+
|
| 1454 |
+
if (categoryId === 'developer') {
|
| 1455 |
+
mainMenu.style.display = 'none';
|
| 1456 |
+
developerMode.style.display = 'block';
|
| 1457 |
+
updateParameterCount();
|
| 1458 |
+
return;
|
| 1459 |
+
}
|
| 1460 |
+
|
| 1461 |
+
const category = CATEGORIES[categoryId];
|
| 1462 |
+
categoryTitle.textContent = category.title;
|
| 1463 |
+
categorySubtitle.textContent = category.subtitle;
|
| 1464 |
+
|
| 1465 |
+
// Populate task grid
|
| 1466 |
+
taskGrid.innerHTML = '';
|
| 1467 |
+
Object.entries(category.tasks).forEach(([taskId, task]) => {
|
| 1468 |
+
const difficulty = task.architecture.length <= 3 ? 'easy' :
|
| 1469 |
+
task.architecture.length <= 4 ? 'medium' : 'hard';
|
| 1470 |
+
|
| 1471 |
+
const card = document.createElement('div');
|
| 1472 |
+
card.className = 'task-card';
|
| 1473 |
+
card.onclick = () => selectTask(taskId);
|
| 1474 |
+
card.innerHTML = `
|
| 1475 |
+
<div class="task-icon">${getTaskIcon(taskId)}</div>
|
| 1476 |
+
<h3 class="task-name">${task.title}</h3>
|
| 1477 |
+
<span class="task-difficulty difficulty-${difficulty}">${difficulty.charAt(0).toUpperCase() + difficulty.slice(1)}</span>
|
| 1478 |
+
<p class="task-description">${task.subtitle}</p>
|
| 1479 |
+
<div class="task-specs">Network: ${task.architecture.join('→')} | ${task.isRegression ? 'Regression' : 'Classification'}</div>
|
| 1480 |
+
`;
|
| 1481 |
+
taskGrid.appendChild(card);
|
| 1482 |
+
});
|
| 1483 |
+
|
| 1484 |
+
mainMenu.style.display = 'none';
|
| 1485 |
+
taskSelection.style.display = 'block';
|
| 1486 |
+
}
|
| 1487 |
+
|
| 1488 |
+
function getTaskIcon(taskId) {
|
| 1489 |
+
const icons = {
|
| 1490 |
+
and: '🔗', or: '➕', xor: '⚡', classification: '🎯',
|
| 1491 |
+
sine: '📈', spiral: '🌀', autoencoder: '🔄', rnn: '🔗',
|
| 1492 |
+
gan_discriminator: '🎭', transfer: '📤', pet_classifier: '🐱🐶',
|
| 1493 |
+
color_mixer: '🎨', number_guesser: '🔢', weather_predictor: '🌦️',
|
| 1494 |
+
emoji_matcher: '😊'
|
| 1495 |
+
};
|
| 1496 |
+
return icons[taskId] || '🧠';
|
| 1497 |
+
}
|
| 1498 |
+
|
| 1499 |
+
function goBackToMain() {
|
| 1500 |
+
window.scrollTo(0, 0);
|
| 1501 |
+
mainMenu.style.display = 'block';
|
| 1502 |
+
taskSelection.style.display = 'none';
|
| 1503 |
+
developerMode.style.display = 'none';
|
| 1504 |
+
trainingInterface.style.display = 'none';
|
| 1505 |
+
currentCategory = null;
|
| 1506 |
+
}
|
| 1507 |
+
|
| 1508 |
+
// Developer mode functions
|
| 1509 |
+
function updateParameterCount() {
|
| 1510 |
+
try {
|
| 1511 |
+
const arch = devArchitecture.value.split(',').map(n => parseInt(n.trim()));
|
| 1512 |
+
let params = 0;
|
| 1513 |
+
for (let i = 0; i < arch.length - 1; i++) {
|
| 1514 |
+
params += arch[i] * arch[i + 1] + arch[i + 1]; // weights + biases
|
| 1515 |
+
}
|
| 1516 |
+
paramCount.textContent = `Parameters: ${params} / 5000`;
|
| 1517 |
+
paramCount.className = params > 5000 ? 'param-counter over-limit' : 'param-counter';
|
| 1518 |
+
|
| 1519 |
+
const createBtn = document.getElementById('createCustomTask');
|
| 1520 |
+
createBtn.disabled = params > 5000;
|
| 1521 |
+
} catch (e) {
|
| 1522 |
+
paramCount.textContent = 'Parameters: Invalid architecture';
|
| 1523 |
+
paramCount.className = 'param-counter over-limit';
|
| 1524 |
+
}
|
| 1525 |
+
}
|
| 1526 |
+
|
| 1527 |
+
function createCustomTask() {
|
| 1528 |
+
window.scrollTo(0, 0);
|
| 1529 |
+
try {
|
| 1530 |
+
const architecture = devArchitecture.value.split(',').map(n => parseInt(n.trim()));
|
| 1531 |
+
const learningRate = parseFloat(devLearningRate.value);
|
| 1532 |
+
const data = JSON.parse(devData.value);
|
| 1533 |
+
|
| 1534 |
+
// Validate
|
| 1535 |
+
if (architecture.some(n => isNaN(n) || n < 1)) {
|
| 1536 |
+
alert('Invalid architecture. Use positive integers separated by commas.');
|
| 1537 |
+
return;
|
| 1538 |
+
}
|
| 1539 |
+
|
| 1540 |
+
const params = architecture.reduce((sum, layer, i) =>
|
| 1541 |
+
i === 0 ? 0 : sum + architecture[i-1] * layer + layer, 0);
|
| 1542 |
+
|
| 1543 |
+
if (params > 5000) {
|
| 1544 |
+
alert('Too many parameters! Keep it under 5000 to prevent crashes.');
|
| 1545 |
+
return;
|
| 1546 |
+
}
|
| 1547 |
+
|
| 1548 |
+
if (!Array.isArray(data) || data.length === 0) {
|
| 1549 |
+
alert('Invalid data format. Use JSON array with input, target, and label fields.');
|
| 1550 |
+
return;
|
| 1551 |
+
}
|
| 1552 |
+
|
| 1553 |
+
// Create custom task
|
| 1554 |
+
currentTask = {
|
| 1555 |
+
title: devTaskName.value,
|
| 1556 |
+
subtitle: 'Custom developer task',
|
| 1557 |
+
architecture: architecture,
|
| 1558 |
+
learningRate: learningRate,
|
| 1559 |
+
isRegression: false, // Default to classification
|
| 1560 |
+
data: data,
|
| 1561 |
+
info: [
|
| 1562 |
+
`Custom Problem: ${devTaskName.value} with ${data.length} training samples.`,
|
| 1563 |
+
`Custom Network: ${architecture.join('→')} architecture with ${params} parameters.`,
|
| 1564 |
+
`Custom Training: Learning rate ${learningRate}, batch training with momentum.`
|
| 1565 |
+
]
|
| 1566 |
+
};
|
| 1567 |
+
|
| 1568 |
+
network = new NeuralNetwork(currentTask.architecture, currentTask.learningRate);
|
| 1569 |
+
|
| 1570 |
+
// Update UI
|
| 1571 |
+
taskTitle.textContent = currentTask.title;
|
| 1572 |
+
taskSubtitle.textContent = currentTask.subtitle;
|
| 1573 |
+
outputTitle.textContent = 'Custom Output';
|
| 1574 |
+
|
| 1575 |
+
// Update network labels
|
| 1576 |
+
const layers = currentTask.architecture;
|
| 1577 |
+
let labelText = `Input (${layers[0]})`;
|
| 1578 |
+
if (layers.length > 2) {
|
| 1579 |
+
const hiddenSizes = layers.slice(1, -1).join('+');
|
| 1580 |
+
labelText += `||Hidden (${hiddenSizes})`;
|
| 1581 |
+
}
|
| 1582 |
+
labelText += `||Output (${layers[layers.length-1]})`;
|
| 1583 |
+
networkLabels.innerHTML = labelText.split('||').map(l => `<span>${l}</span>`).join('');
|
| 1584 |
+
|
| 1585 |
+
// Show training interface
|
| 1586 |
+
developerMode.style.display = 'none';
|
| 1587 |
+
trainingInterface.style.display = 'block';
|
| 1588 |
+
|
| 1589 |
+
// Initialize
|
| 1590 |
+
initializeTaskOutput();
|
| 1591 |
+
updateInfoSection();
|
| 1592 |
+
reset();
|
| 1593 |
+
startAnimation();
|
| 1594 |
+
|
| 1595 |
+
} catch (e) {
|
| 1596 |
+
alert('Error creating task: ' + e.message);
|
| 1597 |
+
}
|
| 1598 |
+
}
|
| 1599 |
+
|
| 1600 |
+
// Task selection
|
| 1601 |
+
function selectTask(taskId) {
|
| 1602 |
+
window.scrollTo(0, 0);
|
| 1603 |
+
currentTask = CATEGORIES[currentCategory].tasks[taskId];
|
| 1604 |
+
network = new NeuralNetwork(currentTask.architecture, currentTask.learningRate);
|
| 1605 |
+
|
| 1606 |
+
// Update UI
|
| 1607 |
+
taskTitle.textContent = currentTask.title;
|
| 1608 |
+
taskSubtitle.textContent = currentTask.subtitle;
|
| 1609 |
+
outputTitle.textContent = currentTask.title.split(' ')[0] + ' Results';
|
| 1610 |
+
|
| 1611 |
+
// Update network labels
|
| 1612 |
+
const layers = currentTask.architecture;
|
| 1613 |
+
let labelText = `Input (${layers[0]})`;
|
| 1614 |
+
if (layers.length > 2) {
|
| 1615 |
+
const hiddenSizes = layers.slice(1, -1).join('+');
|
| 1616 |
+
labelText += `||Hidden (${hiddenSizes})`;
|
| 1617 |
+
}
|
| 1618 |
+
labelText += `||Output (${layers[layers.length-1]})`;
|
| 1619 |
+
networkLabels.innerHTML = labelText.split('||').map(l => `<span>${l}</span>`).join('');
|
| 1620 |
+
|
| 1621 |
+
// Setup visualization
|
| 1622 |
+
if (currentTask.hasVisualization) {
|
| 1623 |
+
document.getElementById('lossChart').style.display = 'none';
|
| 1624 |
+
dataViz.style.display = 'block';
|
| 1625 |
+
vizTitle.textContent = 'Data Visualization';
|
| 1626 |
+
} else {
|
| 1627 |
+
document.getElementById('lossChart').style.display = 'block';
|
| 1628 |
+
dataViz.style.display = 'none';
|
| 1629 |
+
vizTitle.textContent = 'Training Progress';
|
| 1630 |
+
}
|
| 1631 |
+
|
| 1632 |
+
// Baby mode setup
|
| 1633 |
+
if (currentTask.isBabyMode) {
|
| 1634 |
+
networkCanvas.style.display = 'none';
|
| 1635 |
+
babyViz.style.display = 'block';
|
| 1636 |
+
setupBabyVisualization();
|
| 1637 |
+
} else {
|
| 1638 |
+
networkCanvas.style.display = 'block';
|
| 1639 |
+
babyViz.style.display = 'none';
|
| 1640 |
+
}
|
| 1641 |
+
|
| 1642 |
+
// Show interface
|
| 1643 |
+
taskSelection.style.display = 'none';
|
| 1644 |
+
trainingInterface.style.display = 'block';
|
| 1645 |
+
|
| 1646 |
+
// Initialize
|
| 1647 |
+
initializeTaskOutput();
|
| 1648 |
+
updateInfoSection();
|
| 1649 |
+
reset();
|
| 1650 |
+
startAnimation();
|
| 1651 |
+
}
|
| 1652 |
+
|
| 1653 |
+
// Baby mode visualization
|
| 1654 |
+
function setupBabyVisualization() {
|
| 1655 |
+
const babyNeurons = document.getElementById('babyNeurons');
|
| 1656 |
+
babyNeurons.innerHTML = '';
|
| 1657 |
+
|
| 1658 |
+
const layers = network.layers;
|
| 1659 |
+
layers.forEach((layerSize, layerIndex) => {
|
| 1660 |
+
for (let i = 0; i < Math.min(layerSize, 6); i++) { // Limit display
|
| 1661 |
+
const neuron = document.createElement('div');
|
| 1662 |
+
neuron.className = 'baby-neuron';
|
| 1663 |
+
neuron.id = `baby-neuron-${layerIndex}-${i}`;
|
| 1664 |
+
neuron.style.backgroundColor = `hsl(${layerIndex * 60 + 200}, 70%, 70%)`;
|
| 1665 |
+
neuron.textContent = '😴';
|
| 1666 |
+
babyNeurons.appendChild(neuron);
|
| 1667 |
+
}
|
| 1668 |
+
if (layerIndex < layers.length - 1) {
|
| 1669 |
+
const arrow = document.createElement('span');
|
| 1670 |
+
arrow.textContent = ' → ';
|
| 1671 |
+
arrow.style.fontSize = '2rem';
|
| 1672 |
+
babyNeurons.appendChild(arrow);
|
| 1673 |
+
}
|
| 1674 |
+
});
|
| 1675 |
+
}
|
| 1676 |
+
|
| 1677 |
+
function updateBabyVisualization() {
|
| 1678 |
+
if (!currentTask || !currentTask.isBabyMode || activations.length === 0) return;
|
| 1679 |
+
|
| 1680 |
+
const layers = network.layers;
|
| 1681 |
+
layers.forEach((layerSize, layerIndex) => {
|
| 1682 |
+
for (let i = 0; i < Math.min(layerSize, 6); i++) {
|
| 1683 |
+
const neuron = document.getElementById(`baby-neuron-${layerIndex}-${i}`);
|
| 1684 |
+
if (neuron && activations[layerIndex]) {
|
| 1685 |
+
const activation = activations[layerIndex][i] || 0;
|
| 1686 |
+
if (activation > 0.5) {
|
| 1687 |
+
neuron.textContent = '🤩';
|
| 1688 |
+
neuron.style.backgroundColor = `hsl(${layerIndex * 60 + 200}, 90%, 80%)`;
|
| 1689 |
+
} else if (activation > 0.2) {
|
| 1690 |
+
neuron.textContent = '😊';
|
| 1691 |
+
neuron.style.backgroundColor = `hsl(${layerIndex * 60 + 200}, 70%, 70%)`;
|
| 1692 |
+
} else {
|
| 1693 |
+
neuron.textContent = '😴';
|
| 1694 |
+
neuron.style.backgroundColor = `hsl(${layerIndex * 60 + 200}, 50%, 60%)`;
|
| 1695 |
+
}
|
| 1696 |
+
}
|
| 1697 |
+
}
|
| 1698 |
+
});
|
| 1699 |
+
}
|
| 1700 |
+
|
| 1701 |
+
// Back to task selection
|
| 1702 |
+
function goBack() {
|
| 1703 |
+
window.scrollTo(0, 0);
|
| 1704 |
+
isTraining = false;
|
| 1705 |
+
clearInterval(trainInterval);
|
| 1706 |
+
trainingInterface.style.display = 'none';
|
| 1707 |
+
|
| 1708 |
+
if (currentCategory) {
|
| 1709 |
+
taskSelection.style.display = 'block';
|
| 1710 |
+
} else {
|
| 1711 |
+
mainMenu.style.display = 'block';
|
| 1712 |
+
}
|
| 1713 |
+
|
| 1714 |
+
currentTask = null;
|
| 1715 |
+
}
|
| 1716 |
+
|
| 1717 |
+
// Initialize task output
|
| 1718 |
+
function initializeTaskOutput() {
|
| 1719 |
+
taskOutput.innerHTML = '';
|
| 1720 |
+
currentTask.data.forEach((data, index) => {
|
| 1721 |
+
const card = document.createElement('div');
|
| 1722 |
+
card.className = 'output-card';
|
| 1723 |
+
card.id = `output-card-${index}`;
|
| 1724 |
+
card.innerHTML = `
|
| 1725 |
+
<div class="output-io">${data.label}</div>
|
| 1726 |
+
<div class="output-raw">Raw: <span id="raw-${index}">0.000</span></div>
|
| 1727 |
+
<div class="output-predicted">Predicted: <span id="pred-${index}">-</span></div>
|
| 1728 |
+
<div class="output-status" id="status-${index}">✗ Wrong</div>
|
| 1729 |
+
`;
|
| 1730 |
+
taskOutput.appendChild(card);
|
| 1731 |
+
});
|
| 1732 |
+
}
|
| 1733 |
+
|
| 1734 |
+
// Update info section
|
| 1735 |
+
function updateInfoSection() {
|
| 1736 |
+
infoContent.innerHTML = currentTask.info.map(info => `<div>${info}</div>`).join('');
|
| 1737 |
+
}
|
| 1738 |
+
|
| 1739 |
+
// Draw network
|
| 1740 |
+
function drawNetwork() {
|
| 1741 |
+
const canvas = networkCanvas;
|
| 1742 |
+
const ctx = canvas.getContext('2d');
|
| 1743 |
+
const width = canvas.width;
|
| 1744 |
+
const height = canvas.height;
|
| 1745 |
+
|
| 1746 |
+
ctx.clearRect(0, 0, width, height);
|
| 1747 |
+
|
| 1748 |
+
if (activations.length === 0) return;
|
| 1749 |
+
|
| 1750 |
+
const layers = network.layers;
|
| 1751 |
+
const layerSpacing = width / (layers.length + 1);
|
| 1752 |
+
const nodeRadius = Math.min(15, width / 30);
|
| 1753 |
+
|
| 1754 |
+
// Draw connections
|
| 1755 |
+
for (let i = 0; i < layers.length - 1; i++) {
|
| 1756 |
+
for (let j = 0; j < layers[i]; j++) {
|
| 1757 |
+
for (let k = 0; k < layers[i + 1]; k++) {
|
| 1758 |
+
const x1 = layerSpacing * (i + 1);
|
| 1759 |
+
const y1 = (height / (layers[i] + 1)) * (j + 1);
|
| 1760 |
+
const x2 = layerSpacing * (i + 2);
|
| 1761 |
+
const y2 = (height / (layers[i + 1] + 1)) * (k + 1);
|
| 1762 |
+
|
| 1763 |
+
const weight = network.weights[i][k][j];
|
| 1764 |
+
const intensity = Math.min(Math.abs(weight) * 1.2, 0.7);
|
| 1765 |
+
|
| 1766 |
+
const baseColor = weight > 0 ?
|
| 1767 |
+
`rgba(34, 197, 94, ${intensity * 0.5})` :
|
| 1768 |
+
`rgba(239, 68, 68, ${intensity * 0.5})`;
|
| 1769 |
+
|
| 1770 |
+
ctx.strokeStyle = baseColor;
|
| 1771 |
+
ctx.lineWidth = Math.max(1, intensity * 1.5);
|
| 1772 |
+
ctx.beginPath();
|
| 1773 |
+
ctx.moveTo(x1, y1);
|
| 1774 |
+
ctx.lineTo(x2, y2);
|
| 1775 |
+
ctx.stroke();
|
| 1776 |
+
|
| 1777 |
+
// Subtle gradient flow
|
| 1778 |
+
if (isTraining && Math.abs(weight) > 0.3) {
|
| 1779 |
+
const flowProgress = ((animationTime * 0.5) % 120) / 120;
|
| 1780 |
+
const flowX = x1 + (x2 - x1) * flowProgress;
|
| 1781 |
+
const flowY = y1 + (y2 - y1) * flowProgress;
|
| 1782 |
+
|
| 1783 |
+
const flowIntensity = intensity * 0.3;
|
| 1784 |
+
ctx.fillStyle = weight > 0 ?
|
| 1785 |
+
`rgba(34, 197, 94, ${flowIntensity})` :
|
| 1786 |
+
`rgba(239, 68, 68, ${flowIntensity})`;
|
| 1787 |
+
ctx.beginPath();
|
| 1788 |
+
ctx.arc(flowX, flowY, 2, 0, 2 * Math.PI);
|
| 1789 |
+
ctx.fill();
|
| 1790 |
+
}
|
| 1791 |
+
}
|
| 1792 |
+
}
|
| 1793 |
+
}
|
| 1794 |
+
|
| 1795 |
+
// Draw nodes
|
| 1796 |
+
layers.forEach((layerSize, layerIndex) => {
|
| 1797 |
+
for (let nodeIndex = 0; nodeIndex < layerSize; nodeIndex++) {
|
| 1798 |
+
const x = layerSpacing * (layerIndex + 1);
|
| 1799 |
+
const y = (height / (layerSize + 1)) * (nodeIndex + 1);
|
| 1800 |
+
|
| 1801 |
+
const activation = activations[layerIndex] ? activations[layerIndex][nodeIndex] : 0;
|
| 1802 |
+
|
| 1803 |
+
const hue = layerIndex === 0 ? 200 : layerIndex === layers.length - 1 ? 280 : 160;
|
| 1804 |
+
const saturation = 50;
|
| 1805 |
+
let lightness = 35 + activation * 25;
|
| 1806 |
+
|
| 1807 |
+
if (isTraining && activation > 0.8) {
|
| 1808 |
+
const pulse = Math.sin(animationTime * 0.05) * 0.1;
|
| 1809 |
+
lightness += pulse * 10;
|
| 1810 |
+
}
|
| 1811 |
+
|
| 1812 |
+
ctx.fillStyle = `hsl(${hue}, ${saturation}%, ${lightness}%)`;
|
| 1813 |
+
ctx.beginPath();
|
| 1814 |
+
ctx.arc(x, y, nodeRadius, 0, 2 * Math.PI);
|
| 1815 |
+
ctx.fill();
|
| 1816 |
+
|
| 1817 |
+
ctx.strokeStyle = '#64748b';
|
| 1818 |
+
ctx.lineWidth = 1.5;
|
| 1819 |
+
ctx.stroke();
|
| 1820 |
+
|
| 1821 |
+
ctx.fillStyle = '#ffffff';
|
| 1822 |
+
ctx.font = `${Math.max(10, nodeRadius / 1.6)}px monospace`;
|
| 1823 |
+
ctx.textAlign = 'center';
|
| 1824 |
+
ctx.textBaseline = 'middle';
|
| 1825 |
+
ctx.shadowColor = 'rgba(0, 0, 0, 0.9)';
|
| 1826 |
+
ctx.shadowBlur = 2;
|
| 1827 |
+
ctx.fillText(activation.toFixed(2), x, y);
|
| 1828 |
+
ctx.shadowBlur = 0;
|
| 1829 |
+
}
|
| 1830 |
+
});
|
| 1831 |
+
}
|
| 1832 |
+
|
| 1833 |
+
// Draw data visualization
|
| 1834 |
+
function drawDataVisualization() {
|
| 1835 |
+
if (!currentTask.hasVisualization) return;
|
| 1836 |
+
|
| 1837 |
+
const canvas = dataViz;
|
| 1838 |
+
const ctx = canvas.getContext('2d');
|
| 1839 |
+
const width = canvas.width;
|
| 1840 |
+
const height = canvas.height;
|
| 1841 |
+
|
| 1842 |
+
ctx.clearRect(0, 0, width, height);
|
| 1843 |
+
|
| 1844 |
+
if (currentTask.title.includes('Classification') || currentTask.title.includes('Spiral') || currentTask.title.includes('GAN')) {
|
| 1845 |
+
// Draw classification data
|
| 1846 |
+
currentTask.data.forEach((point, i) => {
|
| 1847 |
+
const x = point.input[0] * width;
|
| 1848 |
+
const y = height - point.input[1] * height;
|
| 1849 |
+
const prediction = predictions[i];
|
| 1850 |
+
|
| 1851 |
+
// True color
|
| 1852 |
+
ctx.fillStyle = point.target[0] > 0.5 ? '#3b82f6' : '#ef4444';
|
| 1853 |
+
ctx.beginPath();
|
| 1854 |
+
ctx.arc(x, y, 6, 0, 2 * Math.PI);
|
| 1855 |
+
ctx.fill();
|
| 1856 |
+
|
| 1857 |
+
// Prediction border
|
| 1858 |
+
if (prediction) {
|
| 1859 |
+
ctx.strokeStyle = prediction.predicted > 0.5 ? '#3b82f6' : '#ef4444';
|
| 1860 |
+
ctx.lineWidth = prediction.correct ? 3 : 1;
|
| 1861 |
+
ctx.stroke();
|
| 1862 |
+
}
|
| 1863 |
+
});
|
| 1864 |
+
|
| 1865 |
+
// For GAN discriminator, draw decision boundary area
|
| 1866 |
+
if (currentTask.title.includes('GAN')) {
|
| 1867 |
+
ctx.fillStyle = 'rgba(59, 130, 246, 0.1)'; // Light blue for "real" area
|
| 1868 |
+
ctx.fillRect(width * 0.6, 0, width * 0.4, height * 0.4);
|
| 1869 |
+
ctx.fillStyle = 'rgba(239, 68, 68, 0.1)'; // Light red for "fake" area
|
| 1870 |
+
ctx.fillRect(0, height * 0.6, width * 0.4, height * 0.4);
|
| 1871 |
+
}
|
| 1872 |
+
} else if (currentTask.title.includes('Sine')) {
|
| 1873 |
+
// Draw true sine wave
|
| 1874 |
+
ctx.strokeStyle = '#64748b';
|
| 1875 |
+
ctx.lineWidth = 2;
|
| 1876 |
+
ctx.beginPath();
|
| 1877 |
+
for (let x = 0; x < width; x++) {
|
| 1878 |
+
const t = (x / width) * 2 * Math.PI;
|
| 1879 |
+
const y = height - ((Math.sin(t) + 1) / 2) * height;
|
| 1880 |
+
if (x === 0) ctx.moveTo(x, y);
|
| 1881 |
+
else ctx.lineTo(x, y);
|
| 1882 |
+
}
|
| 1883 |
+
ctx.stroke();
|
| 1884 |
+
|
| 1885 |
+
// Draw predictions
|
| 1886 |
+
predictions.forEach((pred, i) => {
|
| 1887 |
+
const x = (currentTask.data[i].input[0]) * width;
|
| 1888 |
+
const y = height - pred.output * height;
|
| 1889 |
+
|
| 1890 |
+
ctx.fillStyle = pred.correct ? '#10b981' : '#ef4444';
|
| 1891 |
+
ctx.beginPath();
|
| 1892 |
+
ctx.arc(x, y, 4, 0, 2 * Math.PI);
|
| 1893 |
+
ctx.fill();
|
| 1894 |
+
});
|
| 1895 |
+
}
|
| 1896 |
+
}
|
| 1897 |
+
|
| 1898 |
+
// Update loss chart
|
| 1899 |
+
function updateLossChart() {
|
| 1900 |
+
if (lossHistory.length < 2) return;
|
| 1901 |
+
|
| 1902 |
+
const points = lossHistory.map((loss, i) => {
|
| 1903 |
+
const x = (i / (lossHistory.length - 1)) * 100;
|
| 1904 |
+
const y = 100 - (Math.min(loss, 1) * 90);
|
| 1905 |
+
return `${x},${y}`;
|
| 1906 |
+
}).join(' ');
|
| 1907 |
+
|
| 1908 |
+
lossLine.setAttribute('points', points);
|
| 1909 |
+
lossArea.setAttribute('points', points + ' 100,100 0,100');
|
| 1910 |
+
}
|
| 1911 |
+
|
| 1912 |
+
// Training step
|
| 1913 |
+
function trainStep() {
|
| 1914 |
+
const result = network.trainBatch(currentTask.data);
|
| 1915 |
+
|
| 1916 |
+
const sample = currentTask.data[currentSample];
|
| 1917 |
+
const output = network.forward(sample.input);
|
| 1918 |
+
|
| 1919 |
+
currentLoss = result.loss;
|
| 1920 |
+
activations = [...network.activations];
|
| 1921 |
+
weightChanges = result.weightChanges;
|
| 1922 |
+
|
| 1923 |
+
lossHistory.push(result.loss);
|
| 1924 |
+
if (lossHistory.length > 100) lossHistory.shift();
|
| 1925 |
+
|
| 1926 |
+
const newPredictions = currentTask.data.map(data => {
|
| 1927 |
+
const output = network.forward(data.input);
|
| 1928 |
+
const rawOutput = output[0];
|
| 1929 |
+
|
| 1930 |
+
let predicted, correct;
|
| 1931 |
+
if (currentTask.isRegression) {
|
| 1932 |
+
// For regression, use different tolerances based on task type
|
| 1933 |
+
predicted = rawOutput.toFixed(2);
|
| 1934 |
+
let tolerance = 0.1; // Default tolerance
|
| 1935 |
+
|
| 1936 |
+
// Autoencoder needs more lenient accuracy since it's reconstructing multi-dimensional data
|
| 1937 |
+
if (currentTask.title.includes('Autoencoder')) {
|
| 1938 |
+
tolerance = 0.2;
|
| 1939 |
+
// For autoencoder, check if ALL outputs are within tolerance
|
| 1940 |
+
const allOutputs = network.forward(data.input);
|
| 1941 |
+
let totalError = 0;
|
| 1942 |
+
for (let j = 0; j < data.target.length; j++) {
|
| 1943 |
+
totalError += Math.abs(allOutputs[j] - data.target[j]);
|
| 1944 |
+
}
|
| 1945 |
+
const avgError = totalError / data.target.length;
|
| 1946 |
+
correct = avgError < tolerance;
|
| 1947 |
+
} else {
|
| 1948 |
+
correct = Math.abs(rawOutput - data.target[0]) < tolerance;
|
| 1949 |
+
}
|
| 1950 |
+
} else {
|
| 1951 |
+
// For classification, use threshold
|
| 1952 |
+
predicted = rawOutput >= 0.5 ? 1 : 0;
|
| 1953 |
+
const target = data.target[0];
|
| 1954 |
+
correct = predicted === target;
|
| 1955 |
+
}
|
| 1956 |
+
|
| 1957 |
+
return {
|
| 1958 |
+
...data,
|
| 1959 |
+
output: rawOutput,
|
| 1960 |
+
predicted: predicted,
|
| 1961 |
+
correct: correct
|
| 1962 |
+
};
|
| 1963 |
+
});
|
| 1964 |
+
predictions = newPredictions;
|
| 1965 |
+
|
| 1966 |
+
const correct = newPredictions.filter(p => p.correct).length;
|
| 1967 |
+
accuracy = correct / newPredictions.length;
|
| 1968 |
+
|
| 1969 |
+
const totalLoss = newPredictions.reduce((sum, p) =>
|
| 1970 |
+
sum + Math.pow(p.target[0] - p.output, 2), 0) / newPredictions.length;
|
| 1971 |
+
avgLoss = totalLoss;
|
| 1972 |
+
|
| 1973 |
+
currentSample = (currentSample + 1) % currentTask.data.length;
|
| 1974 |
+
epoch++;
|
| 1975 |
+
|
| 1976 |
+
updateUI();
|
| 1977 |
+
}
|
| 1978 |
+
|
| 1979 |
+
// Update UI
|
| 1980 |
+
function updateUI() {
|
| 1981 |
+
epochValue.textContent = epoch.toLocaleString();
|
| 1982 |
+
lossValue.textContent = avgLoss.toFixed(6);
|
| 1983 |
+
accuracyValue.textContent = (accuracy * 100).toFixed(1) + '%';
|
| 1984 |
+
currentValue.textContent = currentTask.data[currentSample].label;
|
| 1985 |
+
currentLossSpan.textContent = currentLoss.toFixed(6);
|
| 1986 |
+
|
| 1987 |
+
updateLossChart();
|
| 1988 |
+
drawNetwork();
|
| 1989 |
+
if (currentTask.hasVisualization) {
|
| 1990 |
+
drawDataVisualization();
|
| 1991 |
+
}
|
| 1992 |
+
if (currentTask.isBabyMode) {
|
| 1993 |
+
updateBabyVisualization();
|
| 1994 |
+
}
|
| 1995 |
+
|
| 1996 |
+
// Update output cards
|
| 1997 |
+
predictions.forEach((pred, index) => {
|
| 1998 |
+
const card = document.getElementById(`output-card-${index}`);
|
| 1999 |
+
const raw = document.getElementById(`raw-${index}`);
|
| 2000 |
+
const predSpan = document.getElementById(`pred-${index}`);
|
| 2001 |
+
const status = document.getElementById(`status-${index}`);
|
| 2002 |
+
|
| 2003 |
+
if (raw && predSpan && status && card) {
|
| 2004 |
+
raw.textContent = pred.output.toFixed(3);
|
| 2005 |
+
predSpan.textContent = pred.predicted;
|
| 2006 |
+
status.textContent = pred.correct ? '✓ Correct' : '✗ Wrong';
|
| 2007 |
+
status.className = `output-status ${pred.correct ? 'correct' : 'wrong'}`;
|
| 2008 |
+
|
| 2009 |
+
card.className = `output-card ${currentSample === index ? 'current' : pred.correct ? 'correct' : 'wrong'}`;
|
| 2010 |
+
}
|
| 2011 |
+
});
|
| 2012 |
+
}
|
| 2013 |
+
|
| 2014 |
+
// Animation loop
|
| 2015 |
+
function animate() {
|
| 2016 |
+
animationTime += isTraining ? 1 : 0.2;
|
| 2017 |
+
if (currentTask) {
|
| 2018 |
+
drawNetwork();
|
| 2019 |
+
if (currentTask.hasVisualization) {
|
| 2020 |
+
drawDataVisualization();
|
| 2021 |
+
}
|
| 2022 |
+
if (currentTask.isBabyMode) {
|
| 2023 |
+
updateBabyVisualization();
|
| 2024 |
+
}
|
| 2025 |
+
}
|
| 2026 |
+
animationId = requestAnimationFrame(animate);
|
| 2027 |
+
}
|
| 2028 |
+
|
| 2029 |
+
// Start animation
|
| 2030 |
+
function startAnimation() {
|
| 2031 |
+
if (animationId) cancelAnimationFrame(animationId);
|
| 2032 |
+
animate();
|
| 2033 |
+
}
|
| 2034 |
+
|
| 2035 |
+
// Reset function
|
| 2036 |
+
function reset() {
|
| 2037 |
+
if (!currentTask) return;
|
| 2038 |
+
|
| 2039 |
+
isTraining = false;
|
| 2040 |
+
clearInterval(trainInterval);
|
| 2041 |
+
|
| 2042 |
+
network = new NeuralNetwork(currentTask.architecture, currentTask.learningRate);
|
| 2043 |
+
epoch = 0;
|
| 2044 |
+
currentLoss = 1.0;
|
| 2045 |
+
lossHistory = [];
|
| 2046 |
+
currentSample = 0;
|
| 2047 |
+
activations = [];
|
| 2048 |
+
predictions = [];
|
| 2049 |
+
weightChanges = [];
|
| 2050 |
+
avgLoss = 1.0;
|
| 2051 |
+
accuracy = 0;
|
| 2052 |
+
animationTime = 0;
|
| 2053 |
+
|
| 2054 |
+
trainBtn.innerHTML = `
|
| 2055 |
+
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
|
| 2056 |
+
<path d="M8 5v14l11-7z"/>
|
| 2057 |
+
</svg>
|
| 2058 |
+
Start Training
|
| 2059 |
+
`;
|
| 2060 |
+
trainBtn.className = 'btn btn-start';
|
| 2061 |
+
|
| 2062 |
+
updateUI();
|
| 2063 |
+
}
|
| 2064 |
+
|
| 2065 |
+
// Event listeners
|
| 2066 |
+
trainBtn.addEventListener('click', () => {
|
| 2067 |
+
isTraining = !isTraining;
|
| 2068 |
+
|
| 2069 |
+
if (isTraining) {
|
| 2070 |
+
trainBtn.innerHTML = `
|
| 2071 |
+
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
|
| 2072 |
+
<path d="M6 19h4V5H6v14zm8-14v14h4V5h-4z"/>
|
| 2073 |
+
</svg>
|
| 2074 |
+
Pause Training
|
| 2075 |
+
`;
|
| 2076 |
+
trainBtn.className = 'btn btn-pause';
|
| 2077 |
+
|
| 2078 |
+
trainInterval = setInterval(trainStep, 100);
|
| 2079 |
+
} else {
|
| 2080 |
+
trainBtn.innerHTML = `
|
| 2081 |
+
<svg class="icon" fill="currentColor" viewBox="0 0 24 24">
|
| 2082 |
+
<path d="M8 5v14l11-7z"/>
|
| 2083 |
+
</svg>
|
| 2084 |
+
Start Training
|
| 2085 |
+
`;
|
| 2086 |
+
trainBtn.className = 'btn btn-start';
|
| 2087 |
+
|
| 2088 |
+
clearInterval(trainInterval);
|
| 2089 |
+
}
|
| 2090 |
+
});
|
| 2091 |
+
|
| 2092 |
+
resetBtn.addEventListener('click', reset);
|
| 2093 |
+
backBtn.addEventListener('click', goBack);
|
| 2094 |
+
|
| 2095 |
+
// Developer mode event listeners
|
| 2096 |
+
devArchitecture.addEventListener('input', updateParameterCount);
|
| 2097 |
+
|
| 2098 |
+
// Initialize
|
| 2099 |
+
startAnimation();
|
| 2100 |
+
</script>
|
| 2101 |
+
</body>
|
| 2102 |
+
</html>
|