Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ---------------------------------------------------------------------------------------
|
| 2 |
+
# Imports and Options
|
| 3 |
+
# ---------------------------------------------------------------------------------------
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import requests
|
| 7 |
+
import re
|
| 8 |
+
import fitz # PyMuPDF
|
| 9 |
+
import io
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from mlx_vlm import load, generate
|
| 13 |
+
from mlx_vlm.prompt_utils import apply_chat_template
|
| 14 |
+
from mlx_vlm.utils import load_config, stream_generate
|
| 15 |
+
from docling_core.types.doc.document import DocTagsDocument, DoclingDocument
|
| 16 |
+
|
| 17 |
+
# Set Streamlit to wide mode
|
| 18 |
+
# st.set_page_config(layout="wide")
|
| 19 |
+
|
| 20 |
+
# ---------------------------------------------------------------------------------------
|
| 21 |
+
# API Configuration
|
| 22 |
+
# ---------------------------------------------------------------------------------------
|
| 23 |
+
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
|
| 24 |
+
headers = {
|
| 25 |
+
'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
|
| 26 |
+
'Content-Type': 'application/json'
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
# ---------------------------------------------------------------------------------------
|
| 30 |
+
# Survey Analysis Class
|
| 31 |
+
# ---------------------------------------------------------------------------------------
|
| 32 |
+
class SurveyAnalysis:
|
| 33 |
+
def __init__(self, api_key=None):
|
| 34 |
+
self.api_key = api_key
|
| 35 |
+
|
| 36 |
+
def prepare_llm_input(self, survey_response, topics):
|
| 37 |
+
# Create topic description string from user input
|
| 38 |
+
topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()])
|
| 39 |
+
|
| 40 |
+
llm_input = f"""
|
| 41 |
+
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:
|
| 42 |
+
|
| 43 |
+
{topic_descriptions}
|
| 44 |
+
|
| 45 |
+
**Instructions:**
|
| 46 |
+
- Extract and summarize the PDF focusing only on the provided topics.
|
| 47 |
+
- If a topic is not mentioned in the notes, it should not be included in the Topic_Summary.
|
| 48 |
+
- Use **exact quotes** from the original text for each point in your Topic_Summary.
|
| 49 |
+
- Exclude erroneous content.
|
| 50 |
+
- Do not add additional explanations or instructions.
|
| 51 |
+
|
| 52 |
+
**Format your response as follows:**
|
| 53 |
+
[Topic]
|
| 54 |
+
- "Exact quote"
|
| 55 |
+
- "Exact quote"
|
| 56 |
+
- "Exact quote"
|
| 57 |
+
|
| 58 |
+
**Meeting Notes:**
|
| 59 |
+
{survey_response}
|
| 60 |
+
"""
|
| 61 |
+
return llm_input
|
| 62 |
+
|
| 63 |
+
def query_api(self, payload):
|
| 64 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 65 |
+
return response.json()
|
| 66 |
+
|
| 67 |
+
def extract_meeting_notes(self, response):
|
| 68 |
+
output = response.get('outputs', {}).get('out-0', '')
|
| 69 |
+
return output
|
| 70 |
+
|
| 71 |
+
def process_dataframe(self, df, topics):
|
| 72 |
+
results = []
|
| 73 |
+
for _, row in df.iterrows():
|
| 74 |
+
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
| 75 |
+
payload = {
|
| 76 |
+
"user_id": "<USER or Conversation ID>",
|
| 77 |
+
"in-0": llm_input
|
| 78 |
+
}
|
| 79 |
+
response = self.query_api(payload)
|
| 80 |
+
meeting_notes = self.extract_meeting_notes(response)
|
| 81 |
+
results.append({
|
| 82 |
+
'Document_Text': row['Document_Text'],
|
| 83 |
+
'Topic_Summary': meeting_notes
|
| 84 |
+
})
|
| 85 |
+
|
| 86 |
+
result_df = pd.DataFrame(results)
|
| 87 |
+
df = df.reset_index(drop=True)
|
| 88 |
+
return pd.concat([df, result_df[['Topic_Summary']]], axis=1)
|
| 89 |
+
|
| 90 |
+
# ---------------------------------------------------------------------------------------
|
| 91 |
+
# Function to Extract Excerpts
|
| 92 |
+
# ---------------------------------------------------------------------------------------
|
| 93 |
+
def extract_excerpts(processed_df):
|
| 94 |
+
new_rows = []
|
| 95 |
+
|
| 96 |
+
for _, row in processed_df.iterrows():
|
| 97 |
+
Topic_Summary = row['Topic_Summary']
|
| 98 |
+
|
| 99 |
+
# Split the Topic_Summary by topic
|
| 100 |
+
sections = re.split(r'\n(?=\[)', Topic_Summary)
|
| 101 |
+
|
| 102 |
+
for section in sections:
|
| 103 |
+
# Extract the topic
|
| 104 |
+
topic_match = re.match(r'\[([^\]]+)\]', section)
|
| 105 |
+
if topic_match:
|
| 106 |
+
topic = topic_match.group(1)
|
| 107 |
+
|
| 108 |
+
# Extract all excerpts within the section
|
| 109 |
+
excerpts = re.findall(r'- "([^"]+)"', section)
|
| 110 |
+
|
| 111 |
+
for excerpt in excerpts:
|
| 112 |
+
new_rows.append({
|
| 113 |
+
'Document_Text': row['Document_Text'],
|
| 114 |
+
'Topic_Summary': row['Topic_Summary'],
|
| 115 |
+
'Excerpt': excerpt,
|
| 116 |
+
'Topic': topic
|
| 117 |
+
})
|
| 118 |
+
|
| 119 |
+
return pd.DataFrame(new_rows)
|
| 120 |
+
|
| 121 |
+
#------------------------------------------------------------------------
|
| 122 |
+
# Streamlit Configuration
|
| 123 |
+
#------------------------------------------------------------------------
|
| 124 |
+
|
| 125 |
+
# Set page configuration
|
| 126 |
+
st.set_page_config(
|
| 127 |
+
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
|
| 128 |
+
page_icon=":bar_chart:",
|
| 129 |
+
layout="centered",
|
| 130 |
+
initial_sidebar_state="auto",
|
| 131 |
+
menu_items={
|
| 132 |
+
'Get Help': 'mailto:clevesse@steelcase.com',
|
| 133 |
+
'About': "This app is built to support PDF analysis"
|
| 134 |
+
}
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
#------------------------------------------------------------------------
|
| 138 |
+
# Sidebar
|
| 139 |
+
#------------------------------------------------------------------------
|
| 140 |
+
|
| 141 |
+
# Sidebar with image
|
| 142 |
+
with st.sidebar:
|
| 143 |
+
# Set the desired width in pixels
|
| 144 |
+
image_width = 300
|
| 145 |
+
# Define the path to the image
|
| 146 |
+
# image_path = "steelcase_small.png"
|
| 147 |
+
image_path = "/Users/clevesse/Documents/VSC_Code/PDF_Extraction/PDF_Extraction_streamlit/steelcase_small.png"
|
| 148 |
+
# Display the image
|
| 149 |
+
st.image(image_path, width=image_width)
|
| 150 |
+
|
| 151 |
+
# Additional sidebar content
|
| 152 |
+
|
| 153 |
+
with st.expander("**WorkSpace Futures**", expanded=True):
|
| 154 |
+
st.write("""
|
| 155 |
+
Strategic Market Intelligence
|
| 156 |
+
Director: Amy Willard
|
| 157 |
+
|
| 158 |
+
- **Support**: Cheyne LeVesseur PhD
|
| 159 |
+
- **Email**: clevesse@steelcase.com
|
| 160 |
+
""")
|
| 161 |
+
st.divider()
|
| 162 |
+
st.subheader('Instructions')
|
| 163 |
+
|
| 164 |
+
Instructions = """
|
| 165 |
+
- **Step 1**: Upload your PDF file.
|
| 166 |
+
- **Step 2**: Review the processed meeting notes with extracted excerpts and classifications.
|
| 167 |
+
- **Step 3**: Review topic descriptions.
|
| 168 |
+
- **Step 4**: Review topic distribution and frequency.
|
| 169 |
+
- **Step 5**: Review bar charts of topics.
|
| 170 |
+
- **Step 6**: Download the processed data as a CSV file.
|
| 171 |
+
"""
|
| 172 |
+
st.markdown(Instructions)
|
| 173 |
+
|
| 174 |
+
# Load SmolDocling model (mlx_vlm version)
|
| 175 |
+
@st.cache_resource
|
| 176 |
+
def load_smol_docling():
|
| 177 |
+
model_path = "ds4sd/SmolDocling-256M-preview-mlx-bf16"
|
| 178 |
+
model, processor = load(model_path)
|
| 179 |
+
config = load_config(model_path)
|
| 180 |
+
return model, processor, config
|
| 181 |
+
|
| 182 |
+
model, processor, config = load_smol_docling()
|
| 183 |
+
|
| 184 |
+
# Convert PDF to images
|
| 185 |
+
def convert_pdf_to_images(pdf_file):
|
| 186 |
+
images = []
|
| 187 |
+
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
| 188 |
+
for page_number in range(len(doc)):
|
| 189 |
+
page = doc.load_page(page_number)
|
| 190 |
+
pix = page.get_pixmap(dpi=300) # Higher DPI for clarity
|
| 191 |
+
img_data = pix.tobytes("png")
|
| 192 |
+
image = Image.open(io.BytesIO(img_data))
|
| 193 |
+
images.append(image)
|
| 194 |
+
return images
|
| 195 |
+
|
| 196 |
+
# Extract structured markdown text using SmolDocling (mlx_vlm)
|
| 197 |
+
def extract_markdown_from_image(image):
|
| 198 |
+
prompt = "Convert this page to docling."
|
| 199 |
+
formatted_prompt = apply_chat_template(processor, config, prompt, num_images=1)
|
| 200 |
+
output = ""
|
| 201 |
+
|
| 202 |
+
for token in stream_generate(
|
| 203 |
+
model, processor, formatted_prompt, [image], max_tokens=4096, verbose=False):
|
| 204 |
+
output += token.text
|
| 205 |
+
if "</doctag>" in token.text:
|
| 206 |
+
break
|
| 207 |
+
|
| 208 |
+
# Convert DocTags to Markdown
|
| 209 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([output], [image])
|
| 210 |
+
doc = DoclingDocument(name="ExtractedDocument")
|
| 211 |
+
doc.load_from_doctags(doctags_doc)
|
| 212 |
+
markdown_text = doc.export_to_markdown()
|
| 213 |
+
return markdown_text
|
| 214 |
+
|
| 215 |
+
# Streamlit UI
|
| 216 |
+
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
|
| 217 |
+
|
| 218 |
+
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
|
| 219 |
+
|
| 220 |
+
if uploaded_file:
|
| 221 |
+
with st.spinner("Processing PDF..."):
|
| 222 |
+
images = convert_pdf_to_images(uploaded_file)
|
| 223 |
+
|
| 224 |
+
markdown_texts = []
|
| 225 |
+
for idx, image in enumerate(images):
|
| 226 |
+
markdown_text = extract_markdown_from_image(image)
|
| 227 |
+
markdown_texts.append(markdown_text)
|
| 228 |
+
|
| 229 |
+
df = pd.DataFrame({'Document_Text': markdown_texts})
|
| 230 |
+
|
| 231 |
+
st.success("PDF processed successfully!")
|
| 232 |
+
|
| 233 |
+
# Check if extraction was successful
|
| 234 |
+
if df.empty or df['Document_Text'].isnull().all():
|
| 235 |
+
st.error("No meaningful text extracted from the PDF.")
|
| 236 |
+
st.stop()
|
| 237 |
+
|
| 238 |
+
st.markdown("### Extracted Markdown Preview")
|
| 239 |
+
st.write(df.head())
|
| 240 |
+
|
| 241 |
+
# ---------------------------------------------------------------------------------------
|
| 242 |
+
# User Input for Topics
|
| 243 |
+
# ---------------------------------------------------------------------------------------
|
| 244 |
+
st.markdown("### Enter Topics and Descriptions")
|
| 245 |
+
num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1)
|
| 246 |
+
|
| 247 |
+
topics = {}
|
| 248 |
+
for i in range(num_topics):
|
| 249 |
+
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
|
| 250 |
+
description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
|
| 251 |
+
if topic and description:
|
| 252 |
+
topics[topic] = description
|
| 253 |
+
|
| 254 |
+
# Add a button to execute the analysis
|
| 255 |
+
if st.button("Run Analysis"):
|
| 256 |
+
if not topics:
|
| 257 |
+
st.warning("Please enter at least one topic and description.")
|
| 258 |
+
st.stop()
|
| 259 |
+
|
| 260 |
+
# ---------------------------------------------------------------------------------------
|
| 261 |
+
# Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
|
| 262 |
+
# ---------------------------------------------------------------------------------------
|
| 263 |
+
analyzer = SurveyAnalysis()
|
| 264 |
+
processed_df = analyzer.process_dataframe(df, topics)
|
| 265 |
+
df_VIP_extracted = extract_excerpts(processed_df)
|
| 266 |
+
|
| 267 |
+
required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
|
| 268 |
+
missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]
|
| 269 |
+
|
| 270 |
+
if missing_columns:
|
| 271 |
+
st.error(f"Missing columns after processing: {missing_columns}")
|
| 272 |
+
st.stop()
|
| 273 |
+
|
| 274 |
+
df_VIP_extracted = df_VIP_extracted[required_columns]
|
| 275 |
+
|
| 276 |
+
st.markdown("### Processed Meeting Notes")
|
| 277 |
+
st.dataframe(df_VIP_extracted)
|
| 278 |
+
|
| 279 |
+
st.write(f"**Number of meeting notes analyzed:** {len(df)}")
|
| 280 |
+
st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")
|
| 281 |
+
|
| 282 |
+
# CSV download
|
| 283 |
+
csv = df_VIP_extracted.to_csv(index=False)
|
| 284 |
+
st.download_button(
|
| 285 |
+
"Download data as CSV",
|
| 286 |
+
data=csv,
|
| 287 |
+
file_name='extracted_meeting_notes.csv',
|
| 288 |
+
mime='text/csv'
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# Topic distribution visualization
|
| 292 |
+
topic_counts = df_VIP_extracted['Topic'].value_counts()
|
| 293 |
+
frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
|
| 294 |
+
frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)
|
| 295 |
+
|
| 296 |
+
st.markdown("### Topic Distribution")
|
| 297 |
+
st.dataframe(frequency_table)
|
| 298 |
+
|
| 299 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 300 |
+
ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
|
| 301 |
+
ax.set_ylabel('Count')
|
| 302 |
+
ax.set_title('Frequency of Topics')
|
| 303 |
+
st.pyplot(fig)
|
| 304 |
+
|
| 305 |
+
else:
|
| 306 |
+
st.info("Please upload a PDF file to begin.")
|