Update app.py
Browse files
app.py
CHANGED
|
@@ -1,264 +1,3 @@
|
|
| 1 |
-
# # ---------------------------------------------------------------------------------------
|
| 2 |
-
# # Imports and Options
|
| 3 |
-
# # ---------------------------------------------------------------------------------------
|
| 4 |
-
# import streamlit as st
|
| 5 |
-
# import pandas as pd
|
| 6 |
-
# import requests
|
| 7 |
-
# import re
|
| 8 |
-
# import fitz # PyMuPDF
|
| 9 |
-
# import io
|
| 10 |
-
# import matplotlib.pyplot as plt
|
| 11 |
-
# from PIL import Image
|
| 12 |
-
# from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 13 |
-
# from docling_core.types.doc import DoclingDocument
|
| 14 |
-
# from docling_core.types.doc.document import DocTagsDocument
|
| 15 |
-
# import torch
|
| 16 |
-
# import os
|
| 17 |
-
# from huggingface_hub import InferenceClient
|
| 18 |
-
|
| 19 |
-
# # ---------------------------------------------------------------------------------------
|
| 20 |
-
# # Streamlit Page Configuration
|
| 21 |
-
# # ---------------------------------------------------------------------------------------
|
| 22 |
-
# st.set_page_config(
|
| 23 |
-
# page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
|
| 24 |
-
# page_icon=":bar_chart:",
|
| 25 |
-
# layout="centered",
|
| 26 |
-
# initial_sidebar_state="auto",
|
| 27 |
-
# menu_items={
|
| 28 |
-
# 'Get Help': 'mailto:support@mtss.ai',
|
| 29 |
-
# 'About': "This app is built to support PDF analysis"
|
| 30 |
-
# }
|
| 31 |
-
# )
|
| 32 |
-
|
| 33 |
-
# # ---------------------------------------------------------------------------------------
|
| 34 |
-
# # Session State Initialization
|
| 35 |
-
# # ---------------------------------------------------------------------------------------
|
| 36 |
-
# for key in ['pdf_processed', 'markdown_texts', 'df']:
|
| 37 |
-
# if key not in st.session_state:
|
| 38 |
-
# st.session_state[key] = False if key == 'pdf_processed' else []
|
| 39 |
-
|
| 40 |
-
# # ---------------------------------------------------------------------------------------
|
| 41 |
-
# # API Configuration
|
| 42 |
-
# # ---------------------------------------------------------------------------------------
|
| 43 |
-
# # API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
|
| 44 |
-
# # headers = {
|
| 45 |
-
# # 'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
|
| 46 |
-
# # 'Content-Type': 'application/json'
|
| 47 |
-
# # }
|
| 48 |
-
|
| 49 |
-
# # Retrieve Hugging Face API key from environment variables
|
| 50 |
-
# hf_api_key = os.getenv('HF_API_KEY')
|
| 51 |
-
# if not hf_api_key:
|
| 52 |
-
# raise ValueError("HF_API_KEY not set in environment variables")
|
| 53 |
-
|
| 54 |
-
# # Create the Hugging Face inference client
|
| 55 |
-
# client = InferenceClient(api_key=hf_api_key)
|
| 56 |
-
|
| 57 |
-
# # # ---------------------------------------------------------------------------------------
|
| 58 |
-
# # # Survey Analysis Class
|
| 59 |
-
# # # ---------------------------------------------------------------------------------------
|
| 60 |
-
# # class SurveyAnalysis:
|
| 61 |
-
# # def prepare_llm_input(self, survey_response, topics):
|
| 62 |
-
# # topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
|
| 63 |
-
# # return f"""Extract and summarize PDF notes based on topics:
|
| 64 |
-
# # {topic_descriptions}
|
| 65 |
-
|
| 66 |
-
# # Instructions:
|
| 67 |
-
# # - Extract exact quotes per topic.
|
| 68 |
-
# # - Ignore irrelevant topics.
|
| 69 |
-
|
| 70 |
-
# # Format:
|
| 71 |
-
# # [Topic]
|
| 72 |
-
# # - "Exact quote"
|
| 73 |
-
|
| 74 |
-
# # Meeting Notes:
|
| 75 |
-
# # {survey_response}
|
| 76 |
-
# # """
|
| 77 |
-
|
| 78 |
-
# # def query_api(self, payload):
|
| 79 |
-
# # try:
|
| 80 |
-
# # res = requests.post(API_URL, headers=headers, json=payload, timeout=60)
|
| 81 |
-
# # res.raise_for_status()
|
| 82 |
-
# # return res.json()
|
| 83 |
-
# # except requests.exceptions.RequestException as e:
|
| 84 |
-
# # st.error(f"API request failed: {e}")
|
| 85 |
-
# # return {'outputs': {'out-0': ''}}
|
| 86 |
-
|
| 87 |
-
# # def extract_meeting_notes(self, response):
|
| 88 |
-
# # return response.get('outputs', {}).get('out-0', '')
|
| 89 |
-
|
| 90 |
-
# # def process_dataframe(self, df, topics):
|
| 91 |
-
# # results = []
|
| 92 |
-
# # for _, row in df.iterrows():
|
| 93 |
-
# # llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
| 94 |
-
# # payload = {"user_id": "user", "in-0": llm_input}
|
| 95 |
-
# # response = self.query_api(payload)
|
| 96 |
-
# # notes = self.extract_meeting_notes(response)
|
| 97 |
-
# # results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
| 98 |
-
# # return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
| 99 |
-
|
| 100 |
-
# # ---------------------------------------------------------------------------------------
|
| 101 |
-
# # Survey Analysis Class
|
| 102 |
-
# # ---------------------------------------------------------------------------------------
|
| 103 |
-
# class SurveyAnalysis:
|
| 104 |
-
# def prepare_llm_input(self, survey_response, topics):
|
| 105 |
-
# topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
|
| 106 |
-
# return f"""Extract and summarize PDF notes based on topics:
|
| 107 |
-
# {topic_descriptions}
|
| 108 |
-
|
| 109 |
-
# Instructions:
|
| 110 |
-
# - Extract exact quotes per topic.
|
| 111 |
-
# - Ignore irrelevant topics.
|
| 112 |
-
|
| 113 |
-
# Format:
|
| 114 |
-
# [Topic]
|
| 115 |
-
# - "Exact quote"
|
| 116 |
-
|
| 117 |
-
# Meeting Notes:
|
| 118 |
-
# {survey_response}
|
| 119 |
-
# """
|
| 120 |
-
|
| 121 |
-
# def prompt_response_from_hf_llm(self, llm_input):
|
| 122 |
-
# # Define a system prompt to guide the model's responses
|
| 123 |
-
# system_prompt = """
|
| 124 |
-
# <Persona> An expert Implementation Specialist at Michigan's Multi-Tiered System of Support Technical Assistance Center (MiMTSS TA Center) with deep expertise in SWPBIS, SEL, Structured Literacy, Science of Reading, and family engagement practices.</Persona>
|
| 125 |
-
# <Task> Analyze educational data and provide evidence-based recommendations for improving student outcomes across multiple tiers of support, drawing from established frameworks in behavioral interventions, literacy instruction, and family engagement.</Task>
|
| 126 |
-
# <Context> Operating within Michigan's educational system to support schools in implementing multi-tiered support systems, with access to student metrics data and knowledge of state-specific educational requirements and MTSS frameworks. </Context>
|
| 127 |
-
# <Format> Deliver insights through clear, actionable recommendations supported by data analysis, incorporating technical expertise while maintaining accessibility for educators and administrators at various levels of MTSS implementation.</Format>
|
| 128 |
-
# """
|
| 129 |
-
|
| 130 |
-
# # Generate the refined prompt using Hugging Face API
|
| 131 |
-
# response = client.chat.completions.create(
|
| 132 |
-
# model="meta-llama/Llama-3.1-70B-Instruct",
|
| 133 |
-
# messages=[
|
| 134 |
-
# {"role": "system", "content": system_prompt}, # Add system prompt here
|
| 135 |
-
# {"role": "user", "content": llm_input}
|
| 136 |
-
# ],
|
| 137 |
-
# stream=True,
|
| 138 |
-
# temperature=0.5,
|
| 139 |
-
# max_tokens=1024,
|
| 140 |
-
# top_p=0.7
|
| 141 |
-
# )
|
| 142 |
-
|
| 143 |
-
# # Combine messages if response is streamed
|
| 144 |
-
# response_content = ""
|
| 145 |
-
# for message in response:
|
| 146 |
-
# response_content += message.choices[0].delta.content
|
| 147 |
-
|
| 148 |
-
# return response_content.strip()
|
| 149 |
-
|
| 150 |
-
# def extract_text(self, response):
|
| 151 |
-
# return response
|
| 152 |
-
|
| 153 |
-
# def process_dataframe(self, df, topics):
|
| 154 |
-
# results = []
|
| 155 |
-
# for _, row in df.iterrows():
|
| 156 |
-
# llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
| 157 |
-
# response = self.prompt_response_from_hf_llm(llm_input)
|
| 158 |
-
# notes = self.extract_text(response)
|
| 159 |
-
# results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
| 160 |
-
# return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
| 161 |
-
|
| 162 |
-
# # ---------------------------------------------------------------------------------------
|
| 163 |
-
# # Helper Functions
|
| 164 |
-
# # ---------------------------------------------------------------------------------------
|
| 165 |
-
# @st.cache_resource
|
| 166 |
-
# def load_smol_docling():
|
| 167 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 168 |
-
# processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
| 169 |
-
# model = AutoModelForVision2Seq.from_pretrained(
|
| 170 |
-
# "ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32
|
| 171 |
-
# ).to(device)
|
| 172 |
-
# return model, processor
|
| 173 |
-
|
| 174 |
-
# model, processor = load_smol_docling()
|
| 175 |
-
|
| 176 |
-
# def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
|
| 177 |
-
# images = []
|
| 178 |
-
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
| 179 |
-
# for page in doc:
|
| 180 |
-
# pix = page.get_pixmap(dpi=dpi)
|
| 181 |
-
# img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
|
| 182 |
-
# img.thumbnail((max_size, max_size), Image.LANCZOS)
|
| 183 |
-
# images.append(img)
|
| 184 |
-
# return images
|
| 185 |
-
|
| 186 |
-
# def extract_markdown_from_image(image):
|
| 187 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 188 |
-
# prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True)
|
| 189 |
-
# inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
|
| 190 |
-
# with torch.no_grad():
|
| 191 |
-
# generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
| 192 |
-
# doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip()
|
| 193 |
-
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
| 194 |
-
# doc = DoclingDocument(name="ExtractedDocument")
|
| 195 |
-
# doc.load_from_doctags(doctags_doc)
|
| 196 |
-
# return doc.export_to_markdown()
|
| 197 |
-
|
| 198 |
-
# def extract_excerpts(processed_df):
|
| 199 |
-
# rows = []
|
| 200 |
-
# for _, r in processed_df.iterrows():
|
| 201 |
-
# for sec in re.split(r'\n(?=\[)', r['Topic_Summary']):
|
| 202 |
-
# topic_match = re.match(r'\[([^\]]+)\]', sec)
|
| 203 |
-
# if topic_match:
|
| 204 |
-
# topic = topic_match.group(1)
|
| 205 |
-
# excerpts = re.findall(r'- "([^"]+)"', sec)
|
| 206 |
-
# for excerpt in excerpts:
|
| 207 |
-
# rows.append({'Document_Text': r['Document_Text'], 'Topic_Summary': r['Topic_Summary'], 'Excerpt': excerpt, 'Topic': topic})
|
| 208 |
-
# return pd.DataFrame(rows)
|
| 209 |
-
|
| 210 |
-
# # ---------------------------------------------------------------------------------------
|
| 211 |
-
# # Streamlit UI
|
| 212 |
-
# # ---------------------------------------------------------------------------------------
|
| 213 |
-
# st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
|
| 214 |
-
|
| 215 |
-
# uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
|
| 216 |
-
|
| 217 |
-
# if uploaded_file and not st.session_state['pdf_processed']:
|
| 218 |
-
# with st.spinner("Processing PDF..."):
|
| 219 |
-
# images = convert_pdf_to_images(uploaded_file)
|
| 220 |
-
# markdown_texts = [extract_markdown_from_image(img) for img in images]
|
| 221 |
-
# st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts})
|
| 222 |
-
# st.session_state['pdf_processed'] = True
|
| 223 |
-
# st.success("PDF processed successfully!")
|
| 224 |
-
|
| 225 |
-
# if st.session_state['pdf_processed']:
|
| 226 |
-
# st.markdown("### Extracted Text Preview")
|
| 227 |
-
# st.write(st.session_state['df'].head())
|
| 228 |
-
|
| 229 |
-
# st.markdown("### Enter Topics and Descriptions")
|
| 230 |
-
# num_topics = st.number_input("Number of topics", 1, 10, 1)
|
| 231 |
-
# topics = {}
|
| 232 |
-
# for i in range(num_topics):
|
| 233 |
-
# topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
|
| 234 |
-
# desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
|
| 235 |
-
# if topic and desc:
|
| 236 |
-
# topics[topic] = desc
|
| 237 |
-
|
| 238 |
-
# if st.button("Run Analysis"):
|
| 239 |
-
# if not topics:
|
| 240 |
-
# st.warning("Please enter at least one topic and description.")
|
| 241 |
-
# st.stop()
|
| 242 |
-
|
| 243 |
-
# analyzer = SurveyAnalysis()
|
| 244 |
-
# processed_df = analyzer.process_dataframe(st.session_state['df'], topics)
|
| 245 |
-
# extracted_df = extract_excerpts(processed_df)
|
| 246 |
-
|
| 247 |
-
# st.markdown("### Extracted Excerpts")
|
| 248 |
-
# st.dataframe(extracted_df)
|
| 249 |
-
|
| 250 |
-
# csv = extracted_df.to_csv(index=False)
|
| 251 |
-
# st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv")
|
| 252 |
-
|
| 253 |
-
# topic_counts = extracted_df['Topic'].value_counts()
|
| 254 |
-
# fig, ax = plt.subplots()
|
| 255 |
-
# topic_counts.plot.bar(ax=ax, color='#3d9aa1')
|
| 256 |
-
# st.pyplot(fig)
|
| 257 |
-
|
| 258 |
-
# if not uploaded_file:
|
| 259 |
-
# st.info("Please upload a PDF file to begin.")
|
| 260 |
-
|
| 261 |
-
|
| 262 |
# ---------------------------------------------------------------------------------------
|
| 263 |
# Imports and Options
|
| 264 |
# ---------------------------------------------------------------------------------------
|
|
@@ -291,6 +30,39 @@ st.set_page_config(
|
|
| 291 |
}
|
| 292 |
)
|
| 293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
# ---------------------------------------------------------------------------------------
|
| 295 |
# Session State Initialization
|
| 296 |
# ---------------------------------------------------------------------------------------
|
|
@@ -314,7 +86,7 @@ class AIAnalysis:
|
|
| 314 |
def __init__(self, client):
|
| 315 |
self.client = client
|
| 316 |
|
| 317 |
-
def prepare_llm_input(self,
|
| 318 |
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
|
| 319 |
return f"""Extract and summarize PDF notes based on topics:
|
| 320 |
{topic_descriptions}
|
|
@@ -327,8 +99,8 @@ Instructions:
|
|
| 327 |
[Topic]
|
| 328 |
- "Exact quote"
|
| 329 |
|
| 330 |
-
|
| 331 |
-
{
|
| 332 |
"""
|
| 333 |
|
| 334 |
def prompt_response_from_hf_llm(self, llm_input):
|
|
@@ -376,15 +148,6 @@ Meeting Notes:
|
|
| 376 |
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
| 377 |
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
| 378 |
|
| 379 |
-
def process_dataframe(self, df, topics):
|
| 380 |
-
results = []
|
| 381 |
-
for _, row in df.iterrows():
|
| 382 |
-
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
| 383 |
-
response = self.prompt_response_from_hf_llm(llm_input)
|
| 384 |
-
notes = self.extract_text(response)
|
| 385 |
-
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
| 386 |
-
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
| 387 |
-
|
| 388 |
# ---------------------------------------------------------------------------------------
|
| 389 |
# Helper Functions
|
| 390 |
# ---------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# ---------------------------------------------------------------------------------------
|
| 2 |
# Imports and Options
|
| 3 |
# ---------------------------------------------------------------------------------------
|
|
|
|
| 30 |
}
|
| 31 |
)
|
| 32 |
|
| 33 |
+
# ---------------------------------------------------------------------------------------
|
| 34 |
+
# Streamlit Sidebar
|
| 35 |
+
# ---------------------------------------------------------------------------------------
|
| 36 |
+
|
| 37 |
+
st.sidebar.title("📌 About This App")
|
| 38 |
+
|
| 39 |
+
st.sidebar.markdown("""
|
| 40 |
+
#### ⚠️ **Important Note on Processing Time**
|
| 41 |
+
|
| 42 |
+
This app uses the **SmolDocling** model (`ds4sd/SmolDocling-256M-preview`) to convert PDF pages into markdown text. Currently, the model is running on a CPU-based environment (**CPU basic | 2 vCPU - 16 GB RAM**), and therefore processing each page can take a significant amount of time (approximately **6 minutes per page**).
|
| 43 |
+
|
| 44 |
+
This setup is suitable for testing and demonstration purposes, but **not efficient for real-world usage**.
|
| 45 |
+
|
| 46 |
+
For faster processing, consider running the optimized version `ds4sd/SmolDocling-256M-preview-mlx-bf16` locally on a MacBook, where it performs significantly faster.
|
| 47 |
+
|
| 48 |
+
---
|
| 49 |
+
|
| 50 |
+
#### 🛠️ **How This App Works**
|
| 51 |
+
|
| 52 |
+
Here's a quick overview of the workflow:
|
| 53 |
+
|
| 54 |
+
1. **Upload PDF**: You upload a PDF document using the uploader provided.
|
| 55 |
+
2. **Convert PDF to Images**: The PDF is converted into individual images (one per page).
|
| 56 |
+
3. **Extract Markdown from Images**: Each image is processed by the SmolDocling model to extract markdown-formatted text.
|
| 57 |
+
4. **Enter Topics and Descriptions**: You provide specific topics and their descriptions you'd like to extract from the document.
|
| 58 |
+
5. **Extract Excerpts**: The app uses the **meta-llama/Llama-3.1-70B-Instruct** model to extract exact quotes relevant to your provided topics.
|
| 59 |
+
6. **Results in a DataFrame**: All extracted quotes and their topics are compiled into a structured DataFrame that you can preview and download.
|
| 60 |
+
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
Please proceed by uploading your PDF file to begin the analysis.
|
| 64 |
+
""")
|
| 65 |
+
|
| 66 |
# ---------------------------------------------------------------------------------------
|
| 67 |
# Session State Initialization
|
| 68 |
# ---------------------------------------------------------------------------------------
|
|
|
|
| 86 |
def __init__(self, client):
|
| 87 |
self.client = client
|
| 88 |
|
| 89 |
+
def prepare_llm_input(self, document_content, topics):
|
| 90 |
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
|
| 91 |
return f"""Extract and summarize PDF notes based on topics:
|
| 92 |
{topic_descriptions}
|
|
|
|
| 99 |
[Topic]
|
| 100 |
- "Exact quote"
|
| 101 |
|
| 102 |
+
Document Content:
|
| 103 |
+
{document_content}
|
| 104 |
"""
|
| 105 |
|
| 106 |
def prompt_response_from_hf_llm(self, llm_input):
|
|
|
|
| 148 |
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
| 149 |
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
# ---------------------------------------------------------------------------------------
|
| 152 |
# Helper Functions
|
| 153 |
# ---------------------------------------------------------------------------------------
|