Spaces:
Sleeping
Sleeping
| import faiss | |
| import pickle | |
| import numpy as np | |
| import re | |
| from sentence_transformers import SentenceTransformer | |
| from huggingface_hub import hf_hub_download | |
| from llama_cpp import Llama | |
| def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"): | |
| index = faiss.read_index(index_path) | |
| with open(doc_path, "rb") as f: | |
| documents = pickle.load(f) | |
| return index, documents | |
| def get_embedding_model(): | |
| return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") | |
| def query_index(question, index, documents, model, k=3): | |
| question_embedding = model.encode([question]) | |
| _, indices = index.search(np.array(question_embedding).astype("float32"), k) | |
| return [documents[i] for i in indices[0]] | |
| def nettoyer_context(context): | |
| context = re.sub(r"\[\'(.*?)\'\]", r"\1", context) | |
| context = context.replace("None", "") | |
| return context | |
| def generate_answer(question, context): | |
| model_file = hf_hub_download( | |
| repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", | |
| filename="mistral-7b-instruct-v0.1.Q4_K_M.gguf" | |
| ) | |
| llm = Llama( | |
| model_path=model_file, | |
| n_ctx=2048, | |
| n_threads=6, | |
| verbose=False | |
| ) | |
| prompt = f"""Voici des informations sur des établissements et formations : | |
| {context} | |
| Formule ta réponse comme un conseiller d’orientation bienveillant, de manière fluide et naturelle, sans énumérations brutes. | |
| Question : {question} | |
| Réponse : | |
| """ | |
| output = llm(prompt, max_tokens=128, stop=["</s>"]) | |
| return output["choices"][0]["text"].strip() | |