Spaces:
Running
Running
| from typing import Dict | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from torchmetrics.multimodal import CLIPImageQualityAssessment | |
| class CLIPIQAMetric: | |
| def __init__(self): | |
| self.device = torch.device( | |
| "cuda" | |
| if torch.cuda.is_available() | |
| else "mps" | |
| if torch.backends.mps.is_available() | |
| else "cpu" | |
| ) | |
| self.metric = CLIPImageQualityAssessment( | |
| model_name_or_path="clip_iqa", data_range=255.0, prompts=("quality",) | |
| ) | |
| self.metric.to(self.device) | |
| def name(self) -> str: | |
| return "clip_iqa" | |
| def compute_score(self, image: Image.Image, prompt: str) -> Dict[str, float]: | |
| image_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() | |
| image_tensor = image_tensor.unsqueeze(0) | |
| image_tensor = image_tensor.to(self.device) | |
| scores = self.metric(image_tensor) | |
| return {"clip_iqa": scores.item()} | |