Spaces:
Running
on
Zero
Running
on
Zero
| import io | |
| import os | |
| import math | |
| import time | |
| import json | |
| import glob | |
| from collections import defaultdict, deque, OrderedDict | |
| import datetime | |
| import numpy as np | |
| from pathlib import Path | |
| import argparse | |
| import torch | |
| from torch import optim as optim | |
| import torch.distributed as dist | |
| from tensorboardX import SummaryWriter | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def is_main_process(): | |
| return get_rank() == 0 | |
| def save_on_master(*args, **kwargs): | |
| if is_main_process(): | |
| torch.save(*args, **kwargs) | |
| def setup_for_distributed(is_master): | |
| """ | |
| This function disables printing when not in master process | |
| """ | |
| import builtins as __builtin__ | |
| builtin_print = __builtin__.print | |
| def print(*args, **kwargs): | |
| force = kwargs.pop('force', False) | |
| if is_master or force: | |
| builtin_print(*args, **kwargs) | |
| __builtin__.print = print | |
| def init_distributed_mode(args): | |
| if int(os.getenv('OMPI_COMM_WORLD_SIZE', '0')) > 0: | |
| rank = int(os.environ['OMPI_COMM_WORLD_RANK']) | |
| local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) | |
| world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
| os.environ["LOCAL_RANK"] = os.environ['OMPI_COMM_WORLD_LOCAL_RANK'] | |
| os.environ["RANK"] = os.environ['OMPI_COMM_WORLD_RANK'] | |
| os.environ["WORLD_SIZE"] = os.environ['OMPI_COMM_WORLD_SIZE'] | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ["WORLD_SIZE"]) | |
| args.gpu = int(os.environ["LOCAL_RANK"]) | |
| elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ['WORLD_SIZE']) | |
| args.gpu = int(os.environ['LOCAL_RANK']) | |
| else: | |
| print('Not using distributed mode') | |
| args.distributed = False | |
| return | |
| args.distributed = True | |
| args.dist_backend = 'nccl' | |
| args.dist_url = "env://" | |
| print('| distributed init (rank {}): {}, gpu {}'.format( | |
| args.rank, args.dist_url, args.gpu), flush=True) | |
| def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, | |
| start_warmup_value=0, warmup_steps=-1): | |
| warmup_schedule = np.array([]) | |
| warmup_iters = warmup_epochs * niter_per_ep | |
| if warmup_steps > 0: | |
| warmup_iters = warmup_steps | |
| print("Set warmup steps = %d" % warmup_iters) | |
| if warmup_epochs > 0: | |
| warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) | |
| iters = np.arange(epochs * niter_per_ep - warmup_iters) | |
| schedule = np.array( | |
| [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) | |
| schedule = np.concatenate((warmup_schedule, schedule)) | |
| assert len(schedule) == epochs * niter_per_ep | |
| return schedule | |
| def constant_scheduler(base_value, epochs, niter_per_ep, warmup_epochs=0, | |
| start_warmup_value=1e-6, warmup_steps=-1): | |
| warmup_schedule = np.array([]) | |
| warmup_iters = warmup_epochs * niter_per_ep | |
| if warmup_steps > 0: | |
| warmup_iters = warmup_steps | |
| print("Set warmup steps = %d" % warmup_iters) | |
| if warmup_iters > 0: | |
| warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) | |
| iters = epochs * niter_per_ep - warmup_iters | |
| schedule = np.array([base_value] * iters) | |
| schedule = np.concatenate((warmup_schedule, schedule)) | |
| assert len(schedule) == epochs * niter_per_ep | |
| return schedule | |
| def get_parameter_groups(model, weight_decay=1e-5, base_lr=1e-4, skip_list=(), get_num_layer=None, get_layer_scale=None, **kwargs): | |
| parameter_group_names = {} | |
| parameter_group_vars = {} | |
| for name, param in model.named_parameters(): | |
| if not param.requires_grad: | |
| continue # frozen weights | |
| if len(kwargs.get('filter_name', [])) > 0: | |
| flag = False | |
| for filter_n in kwargs.get('filter_name', []): | |
| if filter_n in name: | |
| print(f"filter {name} because of the pattern {filter_n}") | |
| flag = True | |
| if flag: | |
| continue | |
| default_scale=1. | |
| if param.ndim <= 1 or name.endswith(".bias") or name in skip_list: # param.ndim <= 1 len(param.shape) == 1 | |
| group_name = "no_decay" | |
| this_weight_decay = 0. | |
| else: | |
| group_name = "decay" | |
| this_weight_decay = weight_decay | |
| if get_num_layer is not None: | |
| layer_id = get_num_layer(name) | |
| group_name = "layer_%d_%s" % (layer_id, group_name) | |
| else: | |
| layer_id = None | |
| if group_name not in parameter_group_names: | |
| if get_layer_scale is not None: | |
| scale = get_layer_scale(layer_id) | |
| else: | |
| scale = default_scale | |
| parameter_group_names[group_name] = { | |
| "weight_decay": this_weight_decay, | |
| "params": [], | |
| "lr": base_lr, | |
| "lr_scale": scale, | |
| } | |
| parameter_group_vars[group_name] = { | |
| "weight_decay": this_weight_decay, | |
| "params": [], | |
| "lr": base_lr, | |
| "lr_scale": scale, | |
| } | |
| parameter_group_vars[group_name]["params"].append(param) | |
| parameter_group_names[group_name]["params"].append(name) | |
| print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
| return list(parameter_group_vars.values()) | |
| def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None, **kwargs): | |
| opt_lower = args.opt.lower() | |
| weight_decay = args.weight_decay | |
| skip = {} | |
| if skip_list is not None: | |
| skip = skip_list | |
| elif hasattr(model, 'no_weight_decay'): | |
| skip = model.no_weight_decay() | |
| print(f"Skip weight decay name marked in model: {skip}") | |
| parameters = get_parameter_groups(model, weight_decay, args.lr, skip, get_num_layer, get_layer_scale, **kwargs) | |
| weight_decay = 0. | |
| if 'fused' in opt_lower: | |
| assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' | |
| opt_args = dict(lr=args.lr, weight_decay=weight_decay) | |
| if hasattr(args, 'opt_eps') and args.opt_eps is not None: | |
| opt_args['eps'] = args.opt_eps | |
| if hasattr(args, 'opt_beta1') and args.opt_beta1 is not None: | |
| opt_args['betas'] = (args.opt_beta1, args.opt_beta2) | |
| print('Optimizer config:', opt_args) | |
| opt_split = opt_lower.split('_') | |
| opt_lower = opt_split[-1] | |
| if opt_lower == 'sgd' or opt_lower == 'nesterov': | |
| opt_args.pop('eps', None) | |
| optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) | |
| elif opt_lower == 'momentum': | |
| opt_args.pop('eps', None) | |
| optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) | |
| elif opt_lower == 'adam': | |
| optimizer = optim.Adam(parameters, **opt_args) | |
| elif opt_lower == 'adamw': | |
| optimizer = optim.AdamW(parameters, **opt_args) | |
| elif opt_lower == 'adadelta': | |
| optimizer = optim.Adadelta(parameters, **opt_args) | |
| elif opt_lower == 'rmsprop': | |
| optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) | |
| else: | |
| assert False and "Invalid optimizer" | |
| raise ValueError | |
| return optimizer | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not is_dist_avail_and_initialized(): | |
| return | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
| dist.barrier() | |
| dist.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value) | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if v is None: | |
| continue | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError("'{}' object has no attribute '{}'".format( | |
| type(self).__name__, attr)) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append( | |
| "{}: {}".format(name, str(meter)) | |
| ) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None): | |
| i = 0 | |
| if not header: | |
| header = '' | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt='{avg:.4f}') | |
| data_time = SmoothedValue(fmt='{avg:.4f}') | |
| space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
| log_msg = [ | |
| header, | |
| '[{0' + space_fmt + '}/{1}]', | |
| 'eta: {eta}', | |
| '{meters}', | |
| 'time: {time}', | |
| 'data: {data}' | |
| ] | |
| if torch.cuda.is_available(): | |
| log_msg.append('max mem: {memory:.0f}') | |
| log_msg = self.delimiter.join(log_msg) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == len(iterable) - 1: | |
| eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB)) | |
| else: | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time))) | |
| i += 1 | |
| end = time.time() | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| print('{} Total time: {} ({:.4f} s / it)'.format( | |
| header, total_time_str, total_time / len(iterable))) |