Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,12 +10,15 @@ from diffusers.utils import export_to_video
|
|
| 10 |
import spaces
|
| 11 |
import uuid
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
is_canonical = True if os.environ.get("SPACE_ID") == "Pyramid-Flow/pyramid-flow" else False
|
| 14 |
|
| 15 |
# Constants
|
| 16 |
MODEL_PATH = "pyramid-flow-model"
|
| 17 |
MODEL_REPO = "rain1011/pyramid-flow-sd3"
|
| 18 |
-
MODEL_VARIANT = "
|
| 19 |
MODEL_DTYPE = "bf16"
|
| 20 |
|
| 21 |
def center_crop(image, target_width, target_height):
|
|
@@ -63,18 +66,19 @@ model = load_model()
|
|
| 63 |
# Text-to-video generation function
|
| 64 |
@spaces.GPU(duration=120)
|
| 65 |
def generate_video(prompt, image=None, duration=5, guidance_scale=9, video_guidance_scale=5, progress=gr.Progress(track_tqdm=True)):
|
| 66 |
-
multiplier =
|
| 67 |
-
temp = int(duration *
|
| 68 |
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
|
| 69 |
if(image):
|
| 70 |
-
cropped_image = center_crop(image,
|
| 71 |
-
resized_image = cropped_image.resize((
|
| 72 |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
|
| 73 |
frames = model.generate_i2v(
|
| 74 |
prompt=prompt,
|
| 75 |
input_image=resized_image,
|
| 76 |
num_inference_steps=[10, 10, 10],
|
| 77 |
temp=temp,
|
|
|
|
| 78 |
video_guidance_scale=video_guidance_scale,
|
| 79 |
output_type="pil",
|
| 80 |
save_memory=True,
|
|
@@ -85,8 +89,8 @@ def generate_video(prompt, image=None, duration=5, guidance_scale=9, video_guida
|
|
| 85 |
prompt=prompt,
|
| 86 |
num_inference_steps=[20, 20, 20],
|
| 87 |
video_num_inference_steps=[10, 10, 10],
|
| 88 |
-
height=
|
| 89 |
-
width=
|
| 90 |
temp=temp,
|
| 91 |
guidance_scale=guidance_scale,
|
| 92 |
video_guidance_scale=video_guidance_scale,
|
|
@@ -94,14 +98,14 @@ def generate_video(prompt, image=None, duration=5, guidance_scale=9, video_guida
|
|
| 94 |
save_memory=True,
|
| 95 |
)
|
| 96 |
output_path = f"{str(uuid.uuid4())}_output_video.mp4"
|
| 97 |
-
export_to_video(frames, output_path, fps=24)
|
| 98 |
return output_path
|
| 99 |
|
| 100 |
# Gradio interface
|
| 101 |
with gr.Blocks() as demo:
|
| 102 |
-
gr.Markdown("# Pyramid Flow
|
| 103 |
-
gr.Markdown("Pyramid Flow is a training-efficient
|
| 104 |
-
gr.Markdown("[[Paper](https://arxiv.org/pdf/2410.05954)], [[Model](https://huggingface.co/rain1011/pyramid-flow-sd3)], [[Code](https://github.com/jy0205/Pyramid-Flow)]
|
| 105 |
|
| 106 |
with gr.Row():
|
| 107 |
with gr.Column():
|
|
@@ -109,8 +113,8 @@ with gr.Blocks() as demo:
|
|
| 109 |
i2v_image = gr.Image(type="pil", label="Input Image")
|
| 110 |
t2v_prompt = gr.Textbox(label="Prompt")
|
| 111 |
with gr.Accordion("Advanced settings", open=False):
|
| 112 |
-
t2v_duration = gr.Slider(minimum=1, maximum=
|
| 113 |
-
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=
|
| 114 |
t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale")
|
| 115 |
t2v_generate_btn = gr.Button("Generate Video")
|
| 116 |
with gr.Column():
|
|
@@ -122,7 +126,7 @@ with gr.Blocks() as demo:
|
|
| 122 |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space">
|
| 123 |
</a>
|
| 124 |
</p>
|
| 125 |
-
<p>to use privately and generate videos up to 10s</p>
|
| 126 |
</div>
|
| 127 |
""")
|
| 128 |
gr.Examples(
|
|
|
|
| 10 |
import spaces
|
| 11 |
import uuid
|
| 12 |
|
| 13 |
+
import subprocess
|
| 14 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 15 |
+
|
| 16 |
is_canonical = True if os.environ.get("SPACE_ID") == "Pyramid-Flow/pyramid-flow" else False
|
| 17 |
|
| 18 |
# Constants
|
| 19 |
MODEL_PATH = "pyramid-flow-model"
|
| 20 |
MODEL_REPO = "rain1011/pyramid-flow-sd3"
|
| 21 |
+
MODEL_VARIANT = "diffusion_transformer_768p"
|
| 22 |
MODEL_DTYPE = "bf16"
|
| 23 |
|
| 24 |
def center_crop(image, target_width, target_height):
|
|
|
|
| 66 |
# Text-to-video generation function
|
| 67 |
@spaces.GPU(duration=120)
|
| 68 |
def generate_video(prompt, image=None, duration=5, guidance_scale=9, video_guidance_scale=5, progress=gr.Progress(track_tqdm=True)):
|
| 69 |
+
multiplier = 0.8 if is_canonical else 2.4
|
| 70 |
+
temp = int(duration * 0.8) # Convert seconds to temp value (assuming 24 FPS)
|
| 71 |
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
|
| 72 |
if(image):
|
| 73 |
+
cropped_image = center_crop(image, 1280, 720)
|
| 74 |
+
resized_image = cropped_image.resize((1280, 720))
|
| 75 |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
|
| 76 |
frames = model.generate_i2v(
|
| 77 |
prompt=prompt,
|
| 78 |
input_image=resized_image,
|
| 79 |
num_inference_steps=[10, 10, 10],
|
| 80 |
temp=temp,
|
| 81 |
+
guidance_scale=7.0,
|
| 82 |
video_guidance_scale=video_guidance_scale,
|
| 83 |
output_type="pil",
|
| 84 |
save_memory=True,
|
|
|
|
| 89 |
prompt=prompt,
|
| 90 |
num_inference_steps=[20, 20, 20],
|
| 91 |
video_num_inference_steps=[10, 10, 10],
|
| 92 |
+
height=768,
|
| 93 |
+
width=1280,
|
| 94 |
temp=temp,
|
| 95 |
guidance_scale=guidance_scale,
|
| 96 |
video_guidance_scale=video_guidance_scale,
|
|
|
|
| 98 |
save_memory=True,
|
| 99 |
)
|
| 100 |
output_path = f"{str(uuid.uuid4())}_output_video.mp4"
|
| 101 |
+
export_to_video(frames, output_path, fps=8 if is_canonical else 24)
|
| 102 |
return output_path
|
| 103 |
|
| 104 |
# Gradio interface
|
| 105 |
with gr.Blocks() as demo:
|
| 106 |
+
gr.Markdown("# Pyramid Flow")
|
| 107 |
+
gr.Markdown("Pyramid Flow is a training-efficient Autoregressive Video Generation model based on Flow Matching. It is trained only on open-source datasets within 20.7k A100 GPU hours")
|
| 108 |
+
gr.Markdown("[[Paper](https://arxiv.org/pdf/2410.05954)], [[Model](https://huggingface.co/rain1011/pyramid-flow-sd3)], [[Code](https://github.com/jy0205/Pyramid-Flow)]")
|
| 109 |
|
| 110 |
with gr.Row():
|
| 111 |
with gr.Column():
|
|
|
|
| 113 |
i2v_image = gr.Image(type="pil", label="Input Image")
|
| 114 |
t2v_prompt = gr.Textbox(label="Prompt")
|
| 115 |
with gr.Accordion("Advanced settings", open=False):
|
| 116 |
+
t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)", visible=not is_canonical)
|
| 117 |
+
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale")
|
| 118 |
t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale")
|
| 119 |
t2v_generate_btn = gr.Button("Generate Video")
|
| 120 |
with gr.Column():
|
|
|
|
| 126 |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space">
|
| 127 |
</a>
|
| 128 |
</p>
|
| 129 |
+
<p>to use privately and generate videos up to 10s at 24fps</p>
|
| 130 |
</div>
|
| 131 |
""")
|
| 132 |
gr.Examples(
|