Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| import torch | |
| from diffusers import QwenImagePipeline | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1536 | |
| def infer(prompt, negative_prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, true_cfg_scale=4.0, distilled_cfg_scale=1.0, progress=gr.Progress(track_tqdm=True)): | |
| """ | |
| Generates an image based on a user's prompt using the Qwen-Image pipeline. | |
| This function takes textual prompts and various generation parameters, | |
| handles seed randomization, and runs the diffusion model to produce an image. | |
| Args: | |
| prompt (str): The positive text prompt to guide image generation. | |
| negative_prompt (str): The negative text prompt to guide the model | |
| on what to avoid in the generated image. | |
| seed (int, optional): The seed for the random number generator to ensure | |
| reproducible results. Defaults to 42. | |
| randomize_seed (bool, optional): If True, a random seed is generated, | |
| overriding the `seed` parameter. Defaults to False. | |
| width (int, optional): The width of the generated image in pixels. | |
| Defaults to 1024. | |
| height (int, optional): The height of the generated image in pixels. | |
| Defaults to 1024. | |
| num_inference_steps (int, optional): The number of denoising steps. | |
| More steps can lead to higher quality but take longer. Defaults to 4. | |
| true_cfg_scale (float, optional): The Classifier-Free Guidance scale. | |
| Controls how strictly the model follows the prompt. Defaults to 4.0. | |
| progress (gr.Progress, optional): A Gradio Progress object to track | |
| the inference progress in the UI. | |
| Returns: | |
| tuple: A tuple containing: | |
| - PIL.Image.Image: The generated image. | |
| - int: The seed used for the generation, which is useful for | |
| reproducibility, especially when `randomize_seed` is True. | |
| """ | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_cfg_scale, | |
| guidance_scale=distilled_cfg_scale | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| "a tiny dragon hatching from a crystal egg on Mars", | |
| "a red panda holding a sign that says 'I love bamboo'", | |
| "a photo of a capybara riding a tricycle in Paris. It is wearing a beret and a striped shirt.", | |
| "an anime illustration of a delicious ramen bowl", | |
| "A logo for a bookstore called 'The Whispering Page'. The logo should feature an open book with a tree growing out of it.", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 580px; | |
| } | |
| """ | |
| # Build the Gradio UI. | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| # Title and description for the demo. | |
| gr.Markdown(f"""# Qwen-Image Text-to-Image | |
| Gradio demo for [Qwen-Image](https://huggingface.co/Qwen/Qwen-Image), a powerful text-to-image model from the Qwen (通义千问) team at Alibaba. | |
| """) | |
| with gr.Row(): | |
| # Main prompt input. | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| # The "Run" button. | |
| run_button = gr.Button("Run", scale=0) | |
| # Negative prompt input. | |
| negative_prompt = gr.Text( | |
| label="Negative Prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| value="text, watermark, copyright, blurry, low resolution", | |
| ) | |
| # Display area for the generated image. | |
| result = gr.Image(label="Result", show_label=False) | |
| # Accordion for advanced settings. | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=4, | |
| ) | |
| true_cfg_scale = gr.Slider( | |
| label="CFG Scale", | |
| info="Controls how much the model follows the prompt. Higher values mean stricter adherence.", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=4.0 | |
| ) | |
| distilled_cfg_scale = gr.Slider( | |
| label="Distilled Guidance", | |
| minimum=0.0, | |
| maximum=20.0, | |
| step=0.1, | |
| value=1.0 | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=infer, | |
| inputs=[prompt, negative_prompt], | |
| outputs=[result, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
| fn=infer, | |
| inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, num_inference_steps, true_cfg_scale, distilled_cfg_scale], | |
| outputs=[result, seed] | |
| ) | |
| demo.launch(mcp_server=True) |