Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Any | |
| from typing import Callable | |
| from typing import ParamSpec | |
| import spaces | |
| import torch | |
| from torch.utils._pytree import tree_map | |
| from spaces.zero.torch.aoti import ZeroGPUCompiledModel, ZeroGPUWeights | |
| P = ParamSpec('P') | |
| TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim('image_seq_length') | |
| TRANSFORMER_TEXT_SEQ_LENGTH_DIM = torch.export.Dim('text_seq_length') | |
| TRANSFORMER_DYNAMIC_SHAPES = { | |
| 'hidden_states': { | |
| 1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM, | |
| }, | |
| 'encoder_hidden_states': { | |
| 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM, | |
| }, | |
| 'encoder_hidden_states_mask': { | |
| 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM, | |
| }, | |
| 'image_rotary_emb': ({ | |
| 0: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM, | |
| }, { | |
| 0: TRANSFORMER_TEXT_SEQ_LENGTH_DIM, | |
| }), | |
| } | |
| INDUCTOR_CONFIGS = { | |
| 'conv_1x1_as_mm': True, | |
| 'epilogue_fusion': False, | |
| 'coordinate_descent_tuning': True, | |
| 'coordinate_descent_check_all_directions': True, | |
| 'max_autotune': True, | |
| 'triton.cudagraphs': True, | |
| } | |
| def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): | |
| def compile_transformer(): | |
| # Only capture what the first `transformer_block` sees. | |
| with spaces.aoti_capture(pipeline.transformer.transformer_blocks[0]) as call: | |
| pipeline(*args, **kwargs) | |
| dynamic_shapes = tree_map(lambda t: None, call.kwargs) | |
| dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES | |
| # Optionally quantize it. | |
| # quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) | |
| # Only export the first transformer block. | |
| exported = torch.export.export( | |
| mod=pipeline.transformer.transformer_blocks[0], | |
| args=call.args, | |
| kwargs=call.kwargs, | |
| dynamic_shapes=dynamic_shapes, | |
| ) | |
| return spaces.aoti_compile(exported, INDUCTOR_CONFIGS) | |
| compiled = compile_transformer() | |
| for block in pipeline.transformer.transformer_blocks: | |
| weights = ZeroGPUWeights(block.state_dict()) | |
| compiled_block = ZeroGPUCompiledModel(compiled.archive_file, weights) | |
| block.forward = compiled_block | |