EDUTUTOR_AI / core /tutor_ai.py
RLikhitha's picture
Create tutor_ai.py
e185086 verified
"""
Main AI Tutor and Educational Features
"""
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import random
from datetime import datetime
from .knowledge_math import KnowledgeBase, MathSolver
class EduTutorAI:
def __init__(self):
self.model_name = "ibm-granite/granite-3.3-2b-instruct"
self.tokenizer = None
self.model = None
self.text_generator = None
self.knowledge_base = KnowledgeBase()
self.math_solver = MathSolver()
def load_model(self):
"""Load IBM Granite model with fallback"""
try:
print("🤖 Loading EduTutor AI model...")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
device_map="auto" if torch.cuda.is_available() else None
)
self.text_generator = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None
)
print("✅ IBM Granite model loaded successfully!")
return True
except Exception as e:
print(f"❌ Error loading model: {str(e)}")
print("🔄 Trying GPT-2 fallback...")
try:
self.model_name = "gpt2"
self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
self.model = AutoModelForCausalLM.from_pretrained("gpt2")
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.text_generator = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
print("✅ GPT-2 fallback loaded!")
return True
except Exception as e2:
print(f"❌ Fallback failed: {str(e2)}")
return False
def is_greeting(self, text: str) -> bool:
"""Check if input is a greeting"""
greetings = ['hello', 'hi', 'hey', 'good morning', 'good afternoon']
return any(greeting in text.lower() for greeting in greetings)
def is_math_problem(self, text: str) -> bool:
"""Check if input contains a math problem"""
if self.math_solver.is_algebraic_equation(text):
return True
math_indicators = ['+', '-', '*', '/', '(', ')', 'calculate', 'compute', 'solve']
return any(indicator in text.lower() for indicator in math_indicators)
def generate_response(self, user_input: str, subject: str = "General", difficulty: str = "Intermediate") -> str:
"""Main response generation method"""
try:
if self.is_greeting(user_input):
return self.generate_greeting_response()
if self.is_math_problem(user_input):
return self.solve_math_problem(user_input)
if self.text_generator is not None:
return self.generate_dynamic_response(user_input, subject, difficulty)
else:
return self.generate_fallback_response(user_input, subject, difficulty)
except Exception as e:
return self.generate_fallback_response(user_input, subject, difficulty)
def generate_greeting_response(self) -> str:
"""Generate friendly greeting"""
responses = [
"Hello! I'm EduTutor AI, your personal learning assistant. What would you like to study today?",
"Hi there! Welcome to EduTutor AI! I'm here to help you learn and grow. What can I help you with?",
"Greetings! I'm ready to make learning fun and engaging. What topic interests you today?"
]
return random.choice(responses)
def solve_math_problem(self, problem: str) -> str:
"""Solve math problems"""
try:
if self.math_solver.is_algebraic_equation(problem):
return self.math_solver.solve_algebraic_equation(problem)
else:
return self.math_solver.solve_arithmetic_expression(problem)
except Exception as e:
return f"**Math Problem Analysis**\n\n**Problem:** {problem}\n\n**Approach:** Identify problem type, apply appropriate methods, show steps, verify answer."
def generate_dynamic_response(self, user_input: str, subject: str, difficulty: str) -> str:
"""Generate AI response"""
try:
prompt = f"""You are EduTutor AI, an expert educational assistant specializing in {subject}.
Student Question: {user_input}
Subject: {subject}
Difficulty Level: {difficulty}
Provide a clear, educational response with explanations, key concepts, and study tips.
Educational Response:"""
response = self.text_generator(
prompt,
max_new_tokens=300,
temperature=0.7,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
generated_text = response[0]['generated_text']
if "Educational Response:" in generated_text:
ai_response = generated_text.split("Educational Response:")[-1].strip()
else:
ai_response = generated_text.replace(prompt, "").strip()
formatted_response = f"**🎓 EduTutor AI Response**\n\n"
formatted_response += f"**Question:** {user_input}\n"
formatted_response += f"**Subject:** {subject} | **Level:** {difficulty}\n\n"
formatted_response += f"**Answer:**\n{ai_response}\n\n"
formatted_response += f"**💡 Study Tip:** Practice similar problems and ask follow-up questions!"
return formatted_response
except Exception as e:
return self.generate_fallback_response(user_input, subject, difficulty)
def generate_fallback_response(self, user_input: str, subject: str, difficulty: str) -> str:
"""Generate fallback response"""
topic_info = self.knowledge_base.get_accurate_info(user_input, subject)
response = f"""**🎓 Educational Response: {user_input}**
**Subject:** {subject} | **Difficulty Level:** {difficulty}
**Understanding the Concept:**
{topic_info['definition']}
**Key Learning Points:**
"""
for concept in topic_info['key_concepts']:
response += f"• **{concept}:** Essential for comprehensive understanding\n"
response += f"""
**Practical Applications:**
{topic_info['applications']}
**Study Recommendations:**
• Review fundamental principles regularly
• Practice with diverse examples and problems
• Connect new learning to previous knowledge
• Don't hesitate to ask follow-up questions!
**💡 Learning Tip:** Break down complex topics into smaller parts and practice regularly!
"""
return response