""" Main AI Tutor and Educational Features """ import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import random from datetime import datetime from .knowledge_math import KnowledgeBase, MathSolver class EduTutorAI: def __init__(self): self.model_name = "ibm-granite/granite-3.3-2b-instruct" self.tokenizer = None self.model = None self.text_generator = None self.knowledge_base = KnowledgeBase() self.math_solver = MathSolver() def load_model(self): """Load IBM Granite model with fallback""" try: print("🤖 Loading EduTutor AI model...") self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token self.model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, low_cpu_mem_usage=True, device_map="auto" if torch.cuda.is_available() else None ) self.text_generator = pipeline( "text-generation", model=self.model, tokenizer=self.tokenizer, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto" if torch.cuda.is_available() else None ) print("✅ IBM Granite model loaded successfully!") return True except Exception as e: print(f"❌ Error loading model: {str(e)}") print("🔄 Trying GPT-2 fallback...") try: self.model_name = "gpt2" self.tokenizer = AutoTokenizer.from_pretrained("gpt2") self.model = AutoModelForCausalLM.from_pretrained("gpt2") if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token self.text_generator = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer) print("✅ GPT-2 fallback loaded!") return True except Exception as e2: print(f"❌ Fallback failed: {str(e2)}") return False def is_greeting(self, text: str) -> bool: """Check if input is a greeting""" greetings = ['hello', 'hi', 'hey', 'good morning', 'good afternoon'] return any(greeting in text.lower() for greeting in greetings) def is_math_problem(self, text: str) -> bool: """Check if input contains a math problem""" if self.math_solver.is_algebraic_equation(text): return True math_indicators = ['+', '-', '*', '/', '(', ')', 'calculate', 'compute', 'solve'] return any(indicator in text.lower() for indicator in math_indicators) def generate_response(self, user_input: str, subject: str = "General", difficulty: str = "Intermediate") -> str: """Main response generation method""" try: if self.is_greeting(user_input): return self.generate_greeting_response() if self.is_math_problem(user_input): return self.solve_math_problem(user_input) if self.text_generator is not None: return self.generate_dynamic_response(user_input, subject, difficulty) else: return self.generate_fallback_response(user_input, subject, difficulty) except Exception as e: return self.generate_fallback_response(user_input, subject, difficulty) def generate_greeting_response(self) -> str: """Generate friendly greeting""" responses = [ "Hello! I'm EduTutor AI, your personal learning assistant. What would you like to study today?", "Hi there! Welcome to EduTutor AI! I'm here to help you learn and grow. What can I help you with?", "Greetings! I'm ready to make learning fun and engaging. What topic interests you today?" ] return random.choice(responses) def solve_math_problem(self, problem: str) -> str: """Solve math problems""" try: if self.math_solver.is_algebraic_equation(problem): return self.math_solver.solve_algebraic_equation(problem) else: return self.math_solver.solve_arithmetic_expression(problem) except Exception as e: return f"**Math Problem Analysis**\n\n**Problem:** {problem}\n\n**Approach:** Identify problem type, apply appropriate methods, show steps, verify answer." def generate_dynamic_response(self, user_input: str, subject: str, difficulty: str) -> str: """Generate AI response""" try: prompt = f"""You are EduTutor AI, an expert educational assistant specializing in {subject}. Student Question: {user_input} Subject: {subject} Difficulty Level: {difficulty} Provide a clear, educational response with explanations, key concepts, and study tips. Educational Response:""" response = self.text_generator( prompt, max_new_tokens=300, temperature=0.7, do_sample=True, pad_token_id=self.tokenizer.eos_token_id ) generated_text = response[0]['generated_text'] if "Educational Response:" in generated_text: ai_response = generated_text.split("Educational Response:")[-1].strip() else: ai_response = generated_text.replace(prompt, "").strip() formatted_response = f"**🎓 EduTutor AI Response**\n\n" formatted_response += f"**Question:** {user_input}\n" formatted_response += f"**Subject:** {subject} | **Level:** {difficulty}\n\n" formatted_response += f"**Answer:**\n{ai_response}\n\n" formatted_response += f"**💡 Study Tip:** Practice similar problems and ask follow-up questions!" return formatted_response except Exception as e: return self.generate_fallback_response(user_input, subject, difficulty) def generate_fallback_response(self, user_input: str, subject: str, difficulty: str) -> str: """Generate fallback response""" topic_info = self.knowledge_base.get_accurate_info(user_input, subject) response = f"""**🎓 Educational Response: {user_input}** **Subject:** {subject} | **Difficulty Level:** {difficulty} **Understanding the Concept:** {topic_info['definition']} **Key Learning Points:** """ for concept in topic_info['key_concepts']: response += f"• **{concept}:** Essential for comprehensive understanding\n" response += f""" **Practical Applications:** {topic_info['applications']} **Study Recommendations:** • Review fundamental principles regularly • Practice with diverse examples and problems • Connect new learning to previous knowledge • Don't hesitate to ask follow-up questions! **💡 Learning Tip:** Break down complex topics into smaller parts and practice regularly! """ return response