Spaces:
Runtime error
Runtime error
| from flask import Flask, render_template, request | |
| import folium | |
| from folium.plugins import HeatMapWithTime, FeatureGroupSubGroup, HeatMap | |
| import pandas as pd | |
| import os | |
| app = Flask(__name__) | |
| # Load the dataset | |
| df = pd.read_csv('final_crop_historic_data_pkjk.csv') | |
| df.columns = ['State', 'District', 'Crop_Year', 'Season', 'Crop', 'Area', 'Production', 'Latitude', 'Longitude'] | |
| def home(): | |
| return render_template('index.html', map_html="", selected_map="Home") | |
| def production_analysis(): | |
| crop_options = df['Crop'].unique().tolist() | |
| selected_crop = request.form.get('crop_type') if request.method == 'POST' else None | |
| if not selected_crop: | |
| return render_template('index.html', map_html="", selected_map="Production Analysis", | |
| crop_options=crop_options, selected_crop=None) | |
| crop_data = df[df['Crop'] == selected_crop] | |
| if crop_data.empty: | |
| return render_template('index.html', map_html="", selected_map="No Data Available", | |
| crop_options=crop_options, selected_crop=selected_crop) | |
| time_index = crop_data['Crop_Year'].unique() | |
| heatmap_data = [ | |
| [[row['Latitude'], row['Longitude']] for _, row in crop_data[crop_data['Crop_Year'] == year].iterrows()] | |
| for year in time_index | |
| ] | |
| m = folium.Map(location=[20.5937, 78.9629], zoom_start=5) | |
| heatmap = HeatMapWithTime( | |
| heatmap_data, | |
| index=[str(year) for year in time_index], | |
| auto_play=True, | |
| max_opacity=0.6 | |
| ) | |
| heatmap.add_to(m) | |
| map_html = m._repr_html_() | |
| return render_template('index.html', map_html=map_html, selected_map="Production Heatmap Analysis", | |
| crop_options=crop_options, selected_crop=selected_crop) | |
| def heatmap_analysis(): | |
| global df # Declare df as global | |
| m = folium.Map(location=[20.5937, 78.9629], zoom_start=5) | |
| fg = folium.FeatureGroup(name="Crops") | |
| m.add_child(fg) | |
| df_sampled = df.sample(frac=0.005, random_state=42) # Use a different variable for sampled df | |
| for crop in df_sampled['Crop'].unique(): | |
| subgroup = FeatureGroupSubGroup(fg, crop) | |
| m.add_child(subgroup) | |
| crop_data = df_sampled[df_sampled['Crop'] == crop] | |
| heatmap_data = [[row['Latitude'], row['Longitude']] for _, row in crop_data.iterrows()] | |
| HeatMap(heatmap_data).add_to(subgroup) | |
| folium.LayerControl(collapsed=False).add_to(m) | |
| map_html = m._repr_html_() | |
| return render_template('index.html', map_html=map_html, selected_map="Crop Heatmap Analysis") | |
| def season_analysis(): | |
| global df # Declare df as global | |
| # Initialize the map centered over India with an appropriate zoom level | |
| m = folium.Map(location=[20.5937, 78.9629], zoom_start=5) | |
| # Sample a fraction of the dataframe for performance | |
| df_sampled = df.sample(frac=0.005, random_state=42) | |
| # Create a dictionary to store top 5 crops for each location | |
| top_crops = {} | |
| # Collect the top crops for each unique location (Latitude, Longitude) | |
| for _, row in df_sampled.iterrows(): | |
| lat_lon = (row['Latitude'], row['Longitude']) | |
| crop = row['Crop'] | |
| production = row['Production'] | |
| if lat_lon not in top_crops: | |
| top_crops[lat_lon] = {'Season': row['Season'], 'Crops': {}, 'Area': row['Area']} | |
| if crop not in top_crops[lat_lon]['Crops']: | |
| top_crops[lat_lon]['Crops'][crop] = 0 | |
| top_crops[lat_lon]['Crops'][crop] += production | |
| # Limit to top 5 crops for each location | |
| for location, data in top_crops.items(): | |
| top_crops[location]['Crops'] = sorted(data['Crops'].items(), key=lambda x: x[1], reverse=True)[:5] | |
| # Add scatter points for each unique location with a different color for each season | |
| season_colors = { | |
| 'Kharif': 'orange', | |
| 'Rabi': 'green', | |
| 'Winter': 'blue', | |
| 'Autumn':'pink', | |
| 'Rabi':'brown', | |
| 'Summer':'yellow', | |
| 'Whole Year':'Red' | |
| } | |
| for (latitude, longitude), data in top_crops.items(): | |
| season = data['Season'] | |
| top_crop_list = data['Crops'] | |
| area = data['Area'] | |
| # Create a string for the top crops | |
| top_crops_str = "<br>".join([f"{crop[0]}: {crop[1]}" for crop in top_crop_list]) | |
| # Add a scatter point to the map for each location | |
| folium.CircleMarker( | |
| location=[latitude, longitude], | |
| radius=7, # Fixed radius for scatter points | |
| color=season_colors.get(season, 'gray'), # Use season color or gray if not found | |
| fill=True, | |
| fill_color=season_colors.get(season, 'gray'), | |
| fill_opacity=0.7, | |
| tooltip=(f"Latitude: {latitude}<br>" | |
| f"Longitude: {longitude}<br>" | |
| f"Season: {season}<br>" | |
| f"Area: {area}<br>" | |
| f"Top 5 Crops:<br>{top_crops_str}") | |
| ).add_to(m) | |
| # Convert the map to HTML format for rendering | |
| map_html = m._repr_html_() | |
| # Render the map in the template | |
| return render_template('index.html', map_html=map_html, selected_map="Season Analysis") | |
| def crop_analysis(): | |
| global df # Declare df as global | |
| df_sampled = df.sample(frac=0.005, random_state=42) # Use a different variable for sampled df | |
| m = folium.Map(location=[20.5937, 78.9629], zoom_start=5) | |
| for district in df_sampled['District'].unique(): | |
| district_data = df_sampled[df_sampled['District'] == district] | |
| top_crops = district_data.groupby('Crop')['Production'].sum().nlargest(5).index.tolist() | |
| lat, lon = district_data.iloc[0]['Latitude'], district_data.iloc[0]['Longitude'] | |
| folium.Marker( | |
| location=[lat, lon], | |
| popup=f"<b>District:</b> {district}<br><b>Top 5 Crops:</b> {', '.join(top_crops)}", | |
| icon=folium.Icon(icon='arrow-up', color='green') | |
| ).add_to(m) | |
| map_html = m._repr_html_() | |
| return render_template('index.html', map_html=map_html, selected_map="District Crop Analysis") | |
| if __name__ == '__main__': | |
| app.run(port=7860,host='0.0.0.0') | |