Spaces:
Runtime error
Runtime error
Commit
Β·
732325f
1
Parent(s):
0d4f09e
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from lavis.models import load_model_and_preprocess
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
model_name = "blip2_t5_instruct"
|
| 9 |
+
model_type = "flant5xl"
|
| 10 |
+
model, vis_processors, _ = load_model_and_preprocess(
|
| 11 |
+
name=args.model_name,
|
| 12 |
+
model_type=args.model_type,
|
| 13 |
+
is_eval=True,
|
| 14 |
+
device=device,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def infer(image, prompt, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, decoding_method):
|
| 18 |
+
use_nucleus_sampling = decoding_method == "Nucleus sampling"
|
| 19 |
+
print(image, prompt, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, use_nucleus_sampling)
|
| 20 |
+
image = vis_processors["eval"](image).unsqueeze(0).to(device)
|
| 21 |
+
|
| 22 |
+
samples = {
|
| 23 |
+
"image": image,
|
| 24 |
+
"prompt": prompt,
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
output = model.generate(
|
| 28 |
+
samples,
|
| 29 |
+
length_penalty=float(len_penalty),
|
| 30 |
+
repetition_penalty=float(repetition_penalty),
|
| 31 |
+
num_beams=beam_size,
|
| 32 |
+
max_length=max_len,
|
| 33 |
+
min_length=min_len,
|
| 34 |
+
top_p=top_p,
|
| 35 |
+
use_nucleus_sampling=use_nucleus_sampling,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
return output[0]
|
| 39 |
+
|
| 40 |
+
theme = gr.themes.Monochrome(
|
| 41 |
+
primary_hue="indigo",
|
| 42 |
+
secondary_hue="blue",
|
| 43 |
+
neutral_hue="slate",
|
| 44 |
+
radius_size=gr.themes.sizes.radius_sm,
|
| 45 |
+
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
| 46 |
+
)
|
| 47 |
+
css = ".generating {visibility: hidden}"
|
| 48 |
+
|
| 49 |
+
with gr.Blocks(theme=theme, analytics_enabled=False,css=css) as demo:
|
| 50 |
+
with gr.Column(scale=3):
|
| 51 |
+
image_input = gr.Image(type="pil")
|
| 52 |
+
prompt_textbox = gr.Textbox(label="Prompt:", placeholder="prompt", lines=2)
|
| 53 |
+
output = gr.Textbox(label="Output")
|
| 54 |
+
submit = gr.Button("Run", variant="primary")
|
| 55 |
+
|
| 56 |
+
with gr.Column(scale=1):
|
| 57 |
+
min_len = gr.Slider(
|
| 58 |
+
minimum=1,
|
| 59 |
+
maximum=50,
|
| 60 |
+
value=1,
|
| 61 |
+
step=1,
|
| 62 |
+
interactive=True,
|
| 63 |
+
label="Min Length",
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
max_len = gr.Slider(
|
| 67 |
+
minimum=10,
|
| 68 |
+
maximum=500,
|
| 69 |
+
value=250,
|
| 70 |
+
step=5,
|
| 71 |
+
interactive=True,
|
| 72 |
+
label="Max Length",
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
sampling = gr.Radio(
|
| 76 |
+
choices=["Beam search", "Nucleus sampling"],
|
| 77 |
+
value="Beam search",
|
| 78 |
+
label="Text Decoding Method",
|
| 79 |
+
interactive=True,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
top_p = gr.Slider(
|
| 83 |
+
minimum=0.5,
|
| 84 |
+
maximum=1.0,
|
| 85 |
+
value=0.9,
|
| 86 |
+
step=0.1,
|
| 87 |
+
interactive=True,
|
| 88 |
+
label="Top p",
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
beam_size = gr.Slider(
|
| 92 |
+
minimum=1,
|
| 93 |
+
maximum=10,
|
| 94 |
+
value=5,
|
| 95 |
+
step=1,
|
| 96 |
+
interactive=True,
|
| 97 |
+
label="Beam Size",
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
len_penalty = gr.Slider(
|
| 101 |
+
minimum=-1,
|
| 102 |
+
maximum=2,
|
| 103 |
+
value=1,
|
| 104 |
+
step=0.2,
|
| 105 |
+
interactive=True,
|
| 106 |
+
label="Length Penalty",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
repetition_penalty = gr.Slider(
|
| 110 |
+
minimum=-1,
|
| 111 |
+
maximum=3,
|
| 112 |
+
value=1,
|
| 113 |
+
step=0.2,
|
| 114 |
+
interactive=True,
|
| 115 |
+
label="Repetition Penalty",
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
submit.click(infer, inputs=[image_input, prompt_textbox, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, sampling], outputs=[output])
|
| 119 |
+
|
| 120 |
+
demo.queue(concurrency_count=16).launch(debug=True)
|