Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# Load your saved model
|
| 6 |
+
model = joblib.load('cybersecurity_model.joblib')
|
| 7 |
+
|
| 8 |
+
# Replace this list with your actual feature names in the order your model expects
|
| 9 |
+
FEATURE_NAMES = [
|
| 10 |
+
'A_frequency', 'NS_frequency', 'CNAME_frequency', 'SOA_frequency', 'NULL_frequency',
|
| 11 |
+
'PTR_frequency', 'HINFO_frequency', 'MX_frequency', 'TXT_frequency', 'AAAA_frequency',
|
| 12 |
+
'SRV_frequency', 'OPT_frequency', 'rr_type', 'rr_count', 'rr_name_entropy',
|
| 13 |
+
'rr_name_length', 'distinct_ns', 'distinct_ip', 'unique_country', 'unique_asn',
|
| 14 |
+
'distinct_domains', 'reverse_dns', 'a_records', 'unique_ttl', 'ttl_mean',
|
| 15 |
+
'ttl_variance', 'timestamp', 'FQDN_count', 'subdomain_length', 'upper',
|
| 16 |
+
'lower', 'numeric', 'entropy'
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
def predict(*inputs):
|
| 20 |
+
# Convert inputs to numpy array, reshape for prediction
|
| 21 |
+
data = np.array(inputs).reshape(1, -1)
|
| 22 |
+
|
| 23 |
+
# Predict class label
|
| 24 |
+
prediction = model.predict(data)[0]
|
| 25 |
+
|
| 26 |
+
# Optionally, return class probabilities:
|
| 27 |
+
# proba = model.predict_proba(data)[0]
|
| 28 |
+
# return prediction, proba
|
| 29 |
+
|
| 30 |
+
return prediction
|
| 31 |
+
|
| 32 |
+
# Create Gradio inputs dynamically based on feature names
|
| 33 |
+
inputs = [gr.Number(label=feat) for feat in FEATURE_NAMES]
|
| 34 |
+
|
| 35 |
+
# Gradio Interface setup
|
| 36 |
+
iface = gr.Interface(
|
| 37 |
+
fn=predict,
|
| 38 |
+
inputs=inputs,
|
| 39 |
+
outputs="text",
|
| 40 |
+
title="Cybersecurity Attack Detection",
|
| 41 |
+
description="Input the feature values and predict whether the network activity is benign or an attack."
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
if __name__ == "__main__":
|
| 45 |
+
iface.launch()
|